Quantum Information Processing

, Volume 13, Issue 8, pp 1879–1891 | Cite as

Three-qubit entanglement generation of quantum states dissipating into a common environment

  • Xiao San Ma
  • Ying Qiao
  • Mu Tian Cheng
  • Xiao Dong Liu


In this paper, we investigate the dynamics of entanglement of three-qubit states of a system dissipating into a common environment. By using the tripartite negativity as entanglement measure, our results imply that the three-qubit entanglement can be generated among the three qubits which have no interaction with each other, but interact with the common environment independently. From our analysis, we find that the three-qubit entanglement increases from zero to a stable value which varies with the size of the system with the increasing of the scaled time. Additionally, the extension of the entanglement generation to an arbitrary size of a subsystem is made and some discussion is given.


Entanglement generation Three-qubit entanglement A common environment 



This work was supported by the National Natural Science Foundation of China under Grant Nos. 11105001, 11004001, 10975125, the Key Project of Chinese Ministry of Education (Grant No. 212076), and by Anhui Provincial Natural Science Foundation under Grant No. 1408085QA22.


  1. 1.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)MathSciNetCrossRefADSMATHGoogle Scholar
  2. 2.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)Google Scholar
  3. 3.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)Google Scholar
  4. 4.
    Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)MathSciNetCrossRefADSMATHGoogle Scholar
  5. 5.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)CrossRefADSGoogle Scholar
  6. 6.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, Chap. 3. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  7. 7.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)CrossRefADSGoogle Scholar
  8. 8.
    Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)MathSciNetCrossRefADSMATHGoogle Scholar
  9. 9.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)MathSciNetCrossRefADSMATHGoogle Scholar
  10. 10.
    Eisert, J., Cramer, M., Plenio, M.B.: Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277 (2010)MathSciNetCrossRefADSMATHGoogle Scholar
  11. 11.
    Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)CrossRefADSGoogle Scholar
  12. 12.
    Pan, J.-W., Chen, Z.-B., Weinfurter, H., Zeilinger, A.: Zukowski, : Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012)CrossRefADSGoogle Scholar
  13. 13.
    Silva, I.A., Girolami, D., Auccaise, R., Sarthour, R.S., Oliveira, I.S., Bonagamba, T.J., deAzevedo, E.R., Soares-Pinto, D.O., Adesso, G.: Measuring bipartite quantum correlations of an unknown state. Phys. Rev. Lett. 110, 140501 (2013)CrossRefADSGoogle Scholar
  14. 14.
    Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    Vidal, G., Werner, R.F.: A computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)CrossRefADSGoogle Scholar
  16. 16.
    Hiroshima, T., Adesso, G., Illuminati, F.: Monogamy inequality for distributed Gaussian entanglement. Phys. Rev. Lett. 98, 050503 (2007)CrossRefADSGoogle Scholar
  17. 17.
    Devi, Usha: A.R., Prabhu, R., Rajagopal, A.K.: Characterizing multiparticle entanglement in symmetric N-qubit states via negativity of covariance matrices. Phys. Rev. Lett. 98, 060501 (2007)CrossRefADSGoogle Scholar
  18. 18.
    Rodo, C., Adesso, G., Sanpera, A.: Quantum information with continuous variable systems. Phsy. Rev. Lett. 100, 110505 (2008)CrossRefADSGoogle Scholar
  19. 19.
    Calabrese, P., Cardy, J., Tonni, E.: Entanglement negativity in quantum field theory. Phsy. Rev. Lett. 109, 130502 (2012)CrossRefADSGoogle Scholar
  20. 20.
    Kreis, K., van Loock, P.: Classifying, quantifying, and witnessing qudit-qumode hybrid entanglement. Phys. Rev. A 85, 032307 (2012)CrossRefADSGoogle Scholar
  21. 21.
    Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)MathSciNetCrossRefADSMATHGoogle Scholar
  22. 22.
    Sadiek, G., Alkurtass, B., Aldossary, O.: Entanglement in a time-dependent coupled XY spin chain in an external magnetic field. Phy. Rev. A 82, 052337 (2010)CrossRefADSGoogle Scholar
  23. 23.
    Rudner, M.S., Vandersypen, L.M.K., Vuleti, V., Levitov, L.S.: Generating entanglement and squeezed states of nuclear spins in quantum dots. Phsy. Rev. Lett. 107, 206806 (2011)CrossRefADSGoogle Scholar
  24. 24.
    Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)CrossRefADSGoogle Scholar
  25. 25.
    Qin, W., Wang, C., Long, G.L.: High-dimensional quantum state transfer through a quantum spin chain. Phys. Rev. A 87, 012339 (2013)CrossRefADSGoogle Scholar
  26. 26.
    Zippilli, S., Paternostro, M., Adesso, G., Illuminati, F.: Entanglement replication in driven dissipative many-body systems. Phys. Rev. Lett. 110, 040503 (2013)CrossRefADSGoogle Scholar
  27. 27.
    Plenio, M.B., Huelga, S.F.: Entangled light from white noise. Phys. Rev. Lett. 88, 197901 (2002)CrossRefADSGoogle Scholar
  28. 28.
    Clark, S., Peng, A., Gu, M., Parkins, S.: ibid. 91, 177901 (2003)Google Scholar
  29. 29.
    Mancini, S., Wang, J.: Towards feedback control of entanglement. Eur. Phys. J. D 32, 257 (2005)CrossRefADSGoogle Scholar
  30. 30.
    Hartmann, L., Dur, W., Briegel, H.J.: Steady-state entanglement in open and noisy quantum systems. Phys. Rev. A 74, 052304 (2006)CrossRefADSGoogle Scholar
  31. 31.
    Angelakis, D., Bose, S., Mancini, S.: Steady-state entanglement between hybrid light-matter qubits. Europhys. Lett. 85, 20007 (2009)Google Scholar
  32. 32.
    Krauter, H., Muschik, C.A., Jensen, K., Wasilewski, W., Petersen, J.M., Cirac, J.I., Polzik, E.S.: Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys. Rev. Lett. 107, 080503 (2011)CrossRefADSGoogle Scholar
  33. 33.
    Ghosh, B., Majumdar, A.S., Nayak, N.: Environment-assisted entanglement enhancement. Phys. Rev. A 74, 052315 (2006)CrossRefADSGoogle Scholar
  34. 34.
    Memarzadeh, L., Mancini, S.: Stationary entanglement achievable by environment-induced chain links. Phys. Rev. A 83, 042329 (2011)CrossRefADSGoogle Scholar
  35. 35.
    Rafiee, M., Lupo, C., Mokhtari, H., Mancini, S.: Stationary and uniform entanglement distribution in qubit networks with quasilocal dissipation. Phys. Rev. A 85, 042320 (2012)CrossRefADSGoogle Scholar
  36. 36.
    Huelga, S.F., Rivas, A., Plenio, M.B.: Non-Markovianity-assisted steady state entanglement. Phys. Rev. Lett. 108, 160402 (2012)CrossRefADSGoogle Scholar
  37. 37.
    Braun, D.: Creation of entanglement by interaction with a common heat bath. Phys. Rev. Lett. 89, 277901 (2002)CrossRefADSGoogle Scholar
  38. 38.
    Benatti, F., Floreanini, R., Piani, M.: Environment induced entanglement in Markovian dissipative dynamics. Phys. Rev. Lett. 91, 070402 (2003)CrossRefADSGoogle Scholar
  39. 39.
    Memarzadeh, L., Mancini, S.: Entanglement dynamics for qubits dissipating into a common environment. Phys. Rev. A 87, 032303 (2013)CrossRefADSGoogle Scholar
  40. 40.
    Lu, H.-Z., Zhao, J.-Q., Cao, L.-Z., Wang, X.-Q.: Experimental investigation of the robustness against noise for different Bell-type inequalities in three-qubit Greenberger–Horne–Zeilinger states. Phys. Rev. A 84, 044101 (2011)Google Scholar
  41. 41.
    Giorgi, G.L.: Monogamy properties of quantum and classical correlations. Phys. Rev. A 84, 054301 (2011)CrossRefADSGoogle Scholar
  42. 42.
    Eltschka, C., Siewert, J.: Entanglement of three-qubit Greenberger–Horne–Zeilinger-symmetric states. Phys. Rev. Lett. 108, 020502 (2012)Google Scholar
  43. 43.
    Laskowski, W., Richart, D., Schwemmer, C., Paterek, T., Weinfurter, H.: Experimental Schmidt decomposition and state independent entanglement detection. Phys. Rev. Lett. 108, 240501 (2012)CrossRefADSGoogle Scholar
  44. 44.
    Zhao, M.-J., Zhang, T.-G., Li-Jost, X., Fei, S.-M.: Identification of three-qubit entanglement. Phys. Rev. A 87, 012316 (2013)CrossRefADSGoogle Scholar
  45. 45.
    Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)MATHGoogle Scholar
  46. 46.
    Sabin, C., Garcia-Alcaine, G.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48, 435 (2008)MathSciNetCrossRefADSGoogle Scholar
  47. 47.
    Barreiro, J.T., Muller, M., Schindler, P., Nigg, D., Monz, T., Chwalla, M., Hennrich, M., Roos, C.F., Zoller, P., Blatt, R.: An open-system quantum simulator with trapped ions. Nature (London) 470, 486 (2011)Google Scholar
  48. 48.
    Brakhane, S., Alt, W., Kampschulte, T., Martinez-Dorantes, M., Reimann, R., Yoon, S., Widera, A., Meschede, D.: Bayesian feedback control of a two-atom spin-state in an atom-cavity system. Phys. Rev. Lett. 109, 173601 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xiao San Ma
    • 1
  • Ying Qiao
    • 1
  • Mu Tian Cheng
    • 1
  • Xiao Dong Liu
    • 1
  1. 1.School of Electric Engineering and InformationAnhui University of TechnologyMa’anshanPeople’s Republic of China

Personalised recommendations