Quantum Information Processing

, Volume 13, Issue 9, pp 1917–1929 | Cite as

Cryptanalysis of a sessional blind signature based on quantum cryptography

  • Qi Su
  • Wen-Min Li


A digital signature is a mathematical scheme for demonstrating the authenticity of a digital message or document. A blind signature is a form of digital signature in which the content of a message is disguised (blinded) before it is signed to protect the privacy of the message from the signatory. For signing quantum messages, some quantum blind signature protocols have been proposed. Recently, Khodambashi et al. (Quantum Inf Process 13:121, 2014) proposed a sessional blind signature based on quantum cryptography. It was claimed that these protocol could guarantee unconditional security. However, after our analysis, we find that the signature protocol will cause the key information leakage in the view of information theory. Taking advantage of loophole, the message sender can succeed in forging the signature without the knowledge of the whole exact key between the verifier and him. To conquer this shortcoming, we construct an improved protocol based on it and the new protocol can resist the key information leakage attacks.


Quantum signature Blind signature Information leakage 



This work is supported by NSFC (Grant Nos. 61300181, 61272057, 61202434, 61170270, 61100203, 61121061), Beijing Natural Science Foundation (Grant No. 4122054), Beijing Higher Education Young Elite Teacher Project (Grant Nos. YETP0475, YETP0477), and China Postdoctoral Science Foundation (Grant No. 2013M530561).


  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (IEEE Press, New York, 1984), pp. 175–179 (1984)Google Scholar
  2. 2.
    Zeng, G., Ma, W., Wang, X., Zhu, H.: Signature scheme based on quantum cryptography. Acta Electron. Sin. 29(8), 1098 (2001) (in Chinese)Google Scholar
  3. 3.
    Gottesman, D., Chuang, I.L.: Quantum digital signatures. (2001).
  4. 4.
    Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Lee, H., Hong, C., Kim, H., Lim, J., Yang, H.J.: Arbitrated quantum signature scheme with message recovery. Phys. Lett. A 321(5–6), 295 (2004)MathSciNetCrossRefADSMATHGoogle Scholar
  6. 6.
    Curty, M., Lütkenhaus, N.: Comment on “arbitrated quantum-signature scheme”. Phys. Rev. A 77, 046301 (2008)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Zeng, G.: Reply to “comment on ‘arbitrated quantum-signature scheme’ ”. Phys. Rev. A 78, 016301 (2008)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using bell states. Phys. Rev. A 79, 054307 (2009)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Zou, X., Qiu, D.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82, 042325 (2010)CrossRefADSGoogle Scholar
  10. 10.
    Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)CrossRefADSGoogle Scholar
  11. 11.
    Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84, 062330 (2011)CrossRefADSGoogle Scholar
  12. 12.
    Wen, X.: An e-payment system based on quantum group signature. Phys. Scr. 82(6), 065403 (2010)CrossRefMATHGoogle Scholar
  13. 13.
    Wen, X., Chen, Y., Fang, J.: An inter-bank e-payment protocol based on quantum proxy blind signature. Quantum Inf. Process. 12(1), 549 (2013)MathSciNetCrossRefADSMATHGoogle Scholar
  14. 14.
    Wen, X., Nie, Z.: An e-payment system based on quantum blind and group signature. In: 2010 Second International Symposium on Data, Privacy and E-Commerce (ISDPE), pp. 50–55 (2010)Google Scholar
  15. 15.
    Cai, X.Q., Wei, C.Y.: Cryptanalysis of an inter-bank e-payment protocol based on quantum proxy blind signature. Quantum Inf. Process. 12(4), 1651 (2013)MathSciNetCrossRefADSMATHGoogle Scholar
  16. 16.
    Yin, X.R., Ma, W.P., Liu, W.Y.: A blind quantum signature scheme with \(\chi \)-type entangled states. Int. J. Theor. Phys. 51, 455 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Wen, X., Niu, X., Ji, L., Tian, Y.: A weak blind signature scheme based on quantum cryptography. Opt. Commun. 282(4), 666 (2009)CrossRefADSGoogle Scholar
  18. 18.
    Su, Q., Huang, Z., Wen, Q., Li, W.: Quantum blind signature based on two-state vector formalism. Opt. Commun. 283(21), 4408 (2010)CrossRefADSGoogle Scholar
  19. 19.
    Wang, M.M., Chen, X.B., Niu, X.X., Yang, Y.X.: Re-examining the security of blind quantum signature protocols. Phys. Scr. 86(5), 055006 (2012)CrossRefMATHGoogle Scholar
  20. 20.
    Wang, T.Y., Wen, Q.Y.: Fair quantum blind signatures. Chin. Phys. B 19(6), 060307 (2010)CrossRefADSGoogle Scholar
  21. 21.
    Xu, R., Huang, L., Yang, W., He, L.: Quantum group blind signature scheme without entanglement. Opt. Commun. 284(14), 3654 (2011)CrossRefADSGoogle Scholar
  22. 22.
    Shi, J., Shi, R., Guo, Y., Peng, X., Tang, Y.: Batch proxy quantum blind signature scheme. Sci. China Inf. Sci. 56(5), 1 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Shi, J., Shi, R., Tang, Y., Lee, M.: A multiparty quantum proxy group signature scheme for the entangled-state message with quantum fourier transform. Quantum Inf. Process. 10(5), 653 (2011)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Shi, J., Shi, R., Guo, Y., Peng, X., Lee, M., Park, D.: A (t, n)-threshold scheme of multi-party quantum group signature with irregular quantum fourier transform. Int. J. Theor. Phys. 51, 1038 (2012)CrossRefMATHGoogle Scholar
  25. 25.
    Shi, R., Shi, J., Guo, Y., Lee, M.H.: Multiparty quantum group signature scheme with quantum parallel computation. In: 2011 IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 905–910 (2011)Google Scholar
  26. 26.
    Lo, H.K., Ko, T.M.: Some attacks on quantum-based cryptographic protocols. Quantum Inf. Comput. 5(1), 41 (2005)MathSciNetMATHGoogle Scholar
  27. 27.
    Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)CrossRefADSGoogle Scholar
  28. 28.
    Zhang, Y.S., Li, C.F., Guo, G.C.: Comment on “quantum key distribution without alternative measurements” [phys. rev. a 61, 052312 (2000)]. Phys. Rev. A 63, 036301 (2001)MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the brádler-dušek protocol. Quantum Inf. Comput. 7(4), 329 (2007)MathSciNetMATHGoogle Scholar
  30. 30.
    Gao, F., Wen, Q.Y., Zhu, F.C.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17(9), 3189 (2008)CrossRefADSGoogle Scholar
  31. 31.
    Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Dense-coding attack on three-party quantum key distribution protocols. IEEE J. Quantum Electron. 47(5), 630 (2011)CrossRefADSGoogle Scholar
  32. 32.
    Hao, L., Li, J., Long, G.: Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci. China Phys. Mech. Astron. 53, 491 (2010)CrossRefADSGoogle Scholar
  33. 33.
    Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357(2), 101 (2006)CrossRefADSMATHGoogle Scholar
  34. 34.
    Wójcik, A.: Eavesdropping on the “ping-pong” quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)CrossRefADSGoogle Scholar
  35. 35.
    Wójcik, A.: Comment on “quantum dense key distribution”. Phys. Rev. A 71, 016301 (2005)CrossRefADSGoogle Scholar
  36. 36.
    Cai, Q.Y.: The “ping-pong” protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91, 109801 (2003)CrossRefADSGoogle Scholar
  37. 37.
    Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Consistency of shared reference frames should be reexamined. Phys. Rev. A 77, 014302 (2008)CrossRefADSGoogle Scholar
  38. 38.
    Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: “quantum exam” [phys. lett. a 350 (2006) 174]. Phys. Lett. A 360(6), 748 (2007)CrossRefADSGoogle Scholar
  39. 39.
    Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: A special eavesdropping on one-sender versus N-receiver QSDC protocol. Chin. Phys. Lett. 25(5), 1561 (2008)CrossRefADSGoogle Scholar
  40. 40.
    Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283(1), 192 (2010)CrossRefADSGoogle Scholar
  41. 41.
    Huang, W., Zuo, H.J., Li, Y.B.: Cryptanalysis and improvement of a multi-user quantum communication network using \(\chi \)-type entangled states. Int. J. Theor. Phys. 52(4), 1354 (2013)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)CrossRefADSGoogle Scholar
  43. 43.
    Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A 72, 044302 (2005)CrossRefADSGoogle Scholar
  44. 44.
    Gao, F., Guo, F., Wen, Q., Zhu, F.: Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci. China Ser. G Phys. Mech. Astron. 51(5), 559 (2008)CrossRefADSGoogle Scholar
  45. 45.
    Khodambashi, S., Zakerolhosseini, A.: A sessional blind signature based on quantum cryptography. Quantum Inf. Process. 13(1), 121 (2014)CrossRefADSMathSciNetGoogle Scholar
  46. 46.
    Ye, T.Y., Jiang, L.Z.: Quantum dialogue without information leakage based on the entanglement swapping between any two bell states and the shared secret bell state. Phys. Scr. 89(1), 015103 (2014)CrossRefADSGoogle Scholar
  47. 47.
    Zhou, N.R., Wu, G.T., Gong, L.H., Liu, S.Q.: Secure quantum dialogue protocol based on W states without information leakage. Int. J. Theor. Phys. 52(9), 3204 (2013)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Wang, L.Y., Chen, X.B., Xu, G., Yang, Y.X.: Information leakage in three-party simultaneous quantum secure direct communication with EPR pairs. Opt. Commun. 284(7), 1719 (2011)CrossRefADSGoogle Scholar
  49. 49.
    Nauerth, S., Fürst, M., Schmitt-Manderbach, T., Weier, H., Weinfurter, H.: Information leakage via side channels in freespace bb84 quantum cryptography. New J. Phys. 11(6), 065001 (2009)CrossRefADSGoogle Scholar
  50. 50.
    Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306 (1997)CrossRefADSGoogle Scholar
  51. 51.
    Huang, W., Guo, F.Z., Huang, Z., Wen, Q.Y., Zhu, F.C.: Three-particle QKD protocol against a collective noise. Opt. Commun. 284(1), 536 (2011)CrossRefADSGoogle Scholar
  52. 52.
    Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., Saleh, B.E.A., Teich, M.C.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91, 087901 (2003)CrossRefADSGoogle Scholar
  53. 53.
    Huang, W., Wen, Q.Y., Jia, H.Y., Qin, S.J., Gao, F.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 21(10), 100308 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijing China

Personalised recommendations