Quantum Information Processing

, Volume 13, Issue 8, pp 1765–1787 | Cite as

Quantum image encryption based on restricted geometric and color transformations

  • Xian-Hua Song
  • Shen Wang
  • Ahmed A. Abd El-Latif
  • Xia-Mu Niu


A novel encryption scheme for quantum images based on restricted geometric and color transformations is proposed. The new strategy comprises efficient permutation and diffusion properties for quantum image encryption. The core idea of the permutation stage is to scramble the codes of the pixel positions through restricted geometric transformations. Then, a new quantum diffusion operation is implemented on the permutated quantum image based on restricted color transformations. The encryption keys of the two stages are generated by two sensitive chaotic maps, which can ensure the security of the scheme. The final step, measurement, is built by the probabilistic model. Experiments conducted on statistical analysis demonstrate that significant improvements in the results are in favor of the proposed approach.


Quantum computation Quantum image encryption Restricted geometric transformation Restricted color transformation Chaotic system 



The authors are very indebted to the anonymous reviewer for his helpful comments. This work is supported by the National Natural Science Foundation of China(61301099, 61100187, 11201100,61361166006), Heilongjiang Province Educational Department Funds of China (12521107), the Youth Foundation at the Harbin University of Science and Technology (2011YF009) and Ministry of Higher Education and Scientific Research (Egypt-Tunisia Cooperation program: 4-13-A1).


  1. 1.
    Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer, Proc. R. Soc. London A400, 97–117 (1985)Google Scholar
  2. 2.
    Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Efficient color transformations on quantum images. J. Adv. Comput. Intell. Intell. Inform. 15(10), 698–706 (2011)MATHGoogle Scholar
  3. 3.
    Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P.W., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. Part A 52, 3457 (1995)CrossRefADSGoogle Scholar
  4. 4.
    Monz, T., Kim, K., Hansel, W., Riebe, M., Villar, A.S., Schindler, P., Chwalla, M., Hennrich, M., Blatt, R.: Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Let. 102, 040501 (2009)CrossRefADSGoogle Scholar
  5. 5.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  6. 6.
    Venegas-Andraca, S.E., Bose, S.: Quantum computation and image processing: new trends in artifficial intelligence. Proceedings of the International Conference on Artifficial Intelligence IJCAI-03, pp. 1563–1564 (2003)Google Scholar
  7. 7.
    Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. Proceedings of SPIE Conference Quantum Information and Computation, 5105, pp. 137–147 (2003)Google Scholar
  8. 8.
    Lanzagorta, M., Uhlmann, J.: Quantum algorithmic methods for computational geometry. Math. Struct. Comput. Sci. 20(6), 1117–1125 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Trugenberger, C.: Probabilistic quantum memories. Phys. Rev. Lett. 87, 067901 (2001)CrossRefADSGoogle Scholar
  10. 10.
    Trugenberger, C.: Phase transitions in quantum pattern recognition. Phys. Rev. Lett. 89, 277903 (2002)CrossRefADSGoogle Scholar
  11. 11.
    Trugenberger, C.: Quantum pattern recognition. Quantum Inf. Process. 1(6), 471–493 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Abal, G., Donangelo, R., Fort, H.: Conditional strategies in iterated quantum games. Physica A 387, 5326–5332 (2008)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. Proceedings of 35th Annual Symposium Foundations of 751 Computer Science, IEEE Computer Society. Press, Los Almitos, CA, 124 C134 (1994)Google Scholar
  14. 14.
    Zhou, N., Ye, Liu: Novel qubit block encryption algorithm with hybrid keys. Physica A 375, 693–698 (2007)CrossRefADSGoogle Scholar
  15. 15.
    Yang Y.G., Xia J., Jia X., Zhang, H.: Novel image encryption/decryption based on quantum fourier transform and double phase encoding. Quantum Inf. Process., pp. 1–17 (2013)Google Scholar
  16. 16.
    Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quantum Inf. Process. 10(1), 63–84 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Latorre, J.I.: Image compression and entanglement. arXiv:quant-ph/0510031 (2005)
  18. 18.
    Sun B., Le P.Q., Iliyasu A.M., Adrian Garcia J., Yan F., Dong J., F., Hirota, K.: A multi-channel representation for images on quantum computers using the RGB\(\alpha \) color space. Proceedings of the IEEE 7th International Symposium on Intelligent Signal Processing, pp. 160–165 (2011)Google Scholar
  19. 19.
    Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)Google Scholar
  20. 20.
    Simona C., Vasile, M.: Image representation and processing using ternary. Quantum Computing. Adaptive and Natural Computing Algorithms, pp. 366–375 (2013)Google Scholar
  21. 21.
    Zhang, Y., Lu, K., Gao, Y.H., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)Google Scholar
  22. 22.
    Zhou, R.G., Wu, Q., Zhang, M.Q., Shen, C.Y.: Quantum image encryption and decryption algorithm based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)Google Scholar
  23. 23.
    Abd El-Latif, A., Li, L., Zhang, T., Wang, N., Song, X., Niu, X.M.: Digital image encryption based on multiple chaotic systems. Sens. Imaging Int. J. 13(2), 67–88 (2012)Google Scholar
  24. 24.
    Abd El-Latif A.A., Li, L., Wang, N., Han, Q., Niu, X.M.: A New approach to chaotic image encryption based on quantum chaotic systems, exploiting color spaces. Signal Process. 93(11), 2986–3000 (2013)Google Scholar
  25. 25.
    Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412, 1406–1418 (2011)Google Scholar
  26. 26.
    Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Fast geometric transformations on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)MathSciNetMATHGoogle Scholar
  27. 27.
    Abd EI-Latif, A.A., Niu, X.M., Amin, M.: A new image cipher in time and frequency domains. Opt. Commun. 285, 4241–4251 (2012)CrossRefADSGoogle Scholar
  28. 28.
    Arroyo, D.: Framework for the Analysis and Design of Encryption Strategies Based on Discrete-Time Chaotic Dynamical Systems. Universidad Politecnica de Madrid, Madrid (2009)Google Scholar
  29. 29.
    Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Westview Press, Boulder (2003)MATHGoogle Scholar
  30. 30.
    Kocarev, L., Galias, Z., Lian, S.: Intelligent Computing Based on Chaos. Springer, New York, Vol. 184 (2009)Google Scholar
  31. 31.
    Behnia, S., Akhshani, A., Mahmodi, H., Akhavan, A.: A novel algorithm for image encryption based on mixture of chaotic maps. Chaos Solitons Fractals 35(2), 408–419 (2008)MathSciNetCrossRefADSMATHGoogle Scholar
  32. 32.
    Song, X.H., Niu, X.M.: Comment on: Novel image encryption/decryption based on quantum fourier transform and double phase encoding. Quantum Inf. Process (2014). doi: 10.1007/s11128-014-0738-6
  33. 33.
    Yan, F., Le, P.Q., Iliyasu, A.M., Sun, B., Garcia, J.A., Dong, F.Y., Hirota, K.: Assessing the similarity of quantum images based on probability measurements. IEEE World Congress on Computational Intelligence, Brisbane, 10–15 June, pp. 1–6 (2012)Google Scholar
  34. 34.
    The USC-SIPI Image Database. http://sipi.usc.edu/database/database.php
  35. 35.
    Elashry, I.E.: Digital image encryption, MS Thesis, Department of Computer Science and Engineering, Faculty of Electronic Engineering, Menofia University (2010)Google Scholar
  36. 36.
    Gray, R.: Entropy and Information Theory. Springer, New York (2010)Google Scholar
  37. 37.
    Ahmad, J., Ahmed, F.: Efficiency analysis and security evaluation of image encryption schemes. Int. J. Video, Image Process. Network Sec. 12(4), 18–31 (2012)Google Scholar
  38. 38.
    Ahmed, H., Kalash, H., Allah, O.: Implementation of rc5 block cipher algorithm for image cryptosystems. Int. J. Inf. Technol. 3(4) (2007)Google Scholar
  39. 39.
    Enayatifar, R.: Image encryption via logistic map function and heap tree. Int. J. Phys. Sci. 6(2), 221 (2011)Google Scholar
  40. 40.
    Elashry, I., Allah, O., Abbas, A., El-Rabaie, S., El-Samie, F.: Homomorphic image encryption. J. Electron. Imaging 18, 033002 (2009)CrossRefADSGoogle Scholar
  41. 41.
    Fan, H., Wang, Y.N., Jing, L., Yue, J.D., Shi, H.D., Zhang, Y.L., Mu, L.Z.: Quantum cloning machines and the applications, arXiv preprint arXiv:1301.2956 (2013)
  42. 42.
    Scheneie, B.: Applied Cryptography Second Edition: Protocols, Algorithms, and Source Code in C [M], 2nd edn. Wiley, New York (1996)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xian-Hua Song
    • 1
    • 2
  • Shen Wang
    • 1
  • Ahmed A. Abd El-Latif
    • 1
    • 3
  • Xia-Mu Niu
    • 1
  1. 1.School of Computer Science and TechnologyHarbin Institute of TechnologyHarbin China
  2. 2.Department of Applied MathematicsHarbin University of Science and TechnologyHarbin China
  3. 3.Department of Mathematics, Faculty of ScienceMenoufia UniversityShebin Egypt

Personalised recommendations