Quantum Information Processing

, Volume 13, Issue 8, pp 1687–1699 | Cite as

One sided indeterminism alone is not a useful resource to simulate any nonlocal correlation

  • Biswajit Paul
  • Kaushiki Mukherjee
  • Debasis Sarkar


Determinism, no signaling and measurement independence are some of the constraints required for framing Bell inequality. Any model simulating nonlocal correlations must either individually or jointly give up these constraints. Recently Hall (Phys Review A, 84:022102, 2011) derived different forms of Bell inequalities under the assumption of individual or joint relaxation of those constraints on both (i.e., two) the sides of a bipartite system. In this work, we have investigated whether one sided relaxation can also be a useful resource for simulating nonlocal correlations or not. We have derived Bell-type inequalities under the assumption of joint relaxation of these constraints only by one party of a bipartite system. Interestingly, we found that any amount of randomness in correlations of one party in absence of signaling between two parties is incapable of showing any sort of Bell–CHSH violation, whereas signaling and measurement dependence individually can simulate any nonlocal correlations. We have also completed the proof of a recent conjecture due to Hall (Phys. Rev. A 82:062117, 2010; Phys. Rev. A 84:022102, 2011) for one-sided relaxation scenario only.


Nonlocal correlation Bell inequality No signaling 



This work is supported by University Grants Commission(UGC), New Delhi.


  1. 1.
    Bell, J.S.: Physics 1, 195 (1964)Google Scholar
  2. 2.
    Jarrett, J.P.: Nous 18(4), 569 (1984)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Seevinck, M.P.: Parts and Wholes, arXiv:0811.1027
  4. 4.
    Branciard, C., et al.: Nat. Phys. 4, 681 (2008)CrossRefGoogle Scholar
  5. 5.
    Barrett, J., Gisin, N.: Phys. Rev. Lett. 106, 100406 (2011)Google Scholar
  6. 6.
    Hall, M.J.W.: Phys. Rev. Lett. 105, 250404 (2010)CrossRefADSGoogle Scholar
  7. 7.
    Hall, M.J.W.: Phys. Rev. A 82, 062117 (2010)CrossRefADSGoogle Scholar
  8. 8.
    Hall, M.J.W.: Phys. Rev. A 84, 022102 (2011)CrossRefADSGoogle Scholar
  9. 9.
    Kar, G., Gazi, M.D.R., Banik, M., Das, S., Rai, A., Kunkri, S.: J. Phys. A: Math. Theor. 44, 152002 (2011)CrossRefADSGoogle Scholar
  10. 10.
    Banik, M., Gazi, M.D.R., Das, S., Rai, A., Kunkri, S.: J. Phys. A: Math Theor. 45, 475302 (2012)CrossRefGoogle Scholar
  11. 11.
    Pawlowski, M., Kofler, J., Paterek, T., Seevinck, M., Brukner, C.: New J. Phys. 12, 083051 (2010)CrossRefADSGoogle Scholar
  12. 12.
    Paul, B., Mukherjee, K., Sarkar, D.: Phys. Rev. A 88, 014104 (2013)CrossRefADSGoogle Scholar
  13. 13.
    Banik, M.: Phys. Rev. A 88, 032118 (2013)CrossRefADSGoogle Scholar
  14. 14.
    Roy, A., Mukherjee, A., Bhattacharya, S. S., Banik, M., Das, S.: arXiv:1310.8570
  15. 15.
    Massar, S., Bacon, D., Cerf, N., Cleve, R.: Phys. Rev. A 63, 052305 (2001)CrossRefADSGoogle Scholar
  16. 16.
    Toner, B.F., Bacon, D.: Phys. Rev. Lett. 91, 187904 (2003)MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    Degorre, J., Laplante, S., Roland, J.: Phys. Rev. A 72, 062314 (2005)CrossRefADSGoogle Scholar
  18. 18.
    Cerf, N.J., Gisin, N., Massar, S., Popescu, S.: Phys. Rev. Lett. 94, 220403 (2005)CrossRefADSGoogle Scholar
  19. 19.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Phys. Rev. Lett. 23, 880–884 (1969)CrossRefADSGoogle Scholar
  20. 20.
    Tsirelson, B.: Lett. Math. Phys. 4, 93 (1980)MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Biswajit Paul
    • 1
  • Kaushiki Mukherjee
    • 2
  • Debasis Sarkar
    • 2
  1. 1.Department of MathematicsSt.Thomas’ College of Engineering and TechnologyKolkataIndia
  2. 2.Department of Applied MathematicsUniversity of CalcuttaKolkataIndia

Personalised recommendations