Advertisement

Quantum Information Processing

, Volume 13, Issue 5, pp 1211–1221 | Cite as

A quantum model for autonomous learning automata

  • Michael Siomau
Article

Abstract

The idea of information encoding on quantum bearers and its quantum-mechanical processing has revolutionized our world and brought mankind on the verge of enigmatic era of quantum technologies. Inspired by this idea, in present paper, we search for advantages of quantum information processing in the field of machine learning. Exploiting only basic properties of the Hilbert space, superposition principle of quantum mechanics and quantum measurements, we construct a quantum analog for Rosenblatt’s perceptron, which is the simplest learning machine. We demonstrate that the quantum perceptron is superior to its classical counterpart in learning capabilities. In particular, we show that the quantum perceptron is able to learn an arbitrary (Boolean) logical function, perform the classification on previously unseen classes and even recognize the superpositions of learned classes—the task of high importance in applied medical engineering.

Keywords

Pattern classification Quantum simulations Machine learning 

Notes

Acknowledgments

I thank Ning Jiang and Dario Farina for discussions. A part of this work has been done during my visit to the Department of Neurorehabilitation Engineering, Georg-August University Medical Center Göttingen.

References

  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  2. 2.
    Georgescu, I.M., Ashhab S., Nori, F.: Quantum simulation. Rev. Mod. Phys. (2014, in press)Google Scholar
  3. 3.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)CrossRefADSGoogle Scholar
  4. 4.
    Vedral, V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197–234 (2002)MathSciNetCrossRefADSMATHGoogle Scholar
  5. 5.
    Childs, A.M., van Dam, W.: Quantum algorithms for algebraic problems. Rev. Mod. Phys. 82, 1–52 (2010)CrossRefADSMATHGoogle Scholar
  6. 6.
    Kecman, V.: Learning and soft computing: support vector machines, neural networks, and fuzzy logic models. MIT Press, Cambridge (2001)Google Scholar
  7. 7.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, New Jersey (2009)Google Scholar
  8. 8.
    Menneer, T., Narayanan, A.: Quantum-Inspired Neural Networks, Tech. Rep. R329, Univ. of Exeter (1995)Google Scholar
  9. 9.
    Andrecut, M., Ali, M.K.: A quantum perceptron. Int. J. Mod. Phys. B 16, 639–645 (2002)MathSciNetCrossRefADSMATHGoogle Scholar
  10. 10.
    Kouda, N., Matsui, N., Nishimura, H., Peper, F.: Qubit neural network and its learning efficiency. Neural Comput. Appl. 14, 114–121 (2005)CrossRefGoogle Scholar
  11. 11.
    Zhou, R., Qin, L., Jiang, N.: Quantum perceptron network. LNCS 4131, 651–657 (2006)Google Scholar
  12. 12.
    Zhou, R., Ding, Q.: Quantum M–P neural network. Int. J. Theor. Phys. 46, 3209–3215 (2007)CrossRefMATHGoogle Scholar
  13. 13.
    Manzano, D., Pawlowski, M., Brukner, C.: The speed of quantum and classical learning for performing the kth root of NOT. New. J. Phys. 11, 113018 (2009)CrossRefADSGoogle Scholar
  14. 14.
    Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., OBrien, J.L.: Quantum computers. Nature 464, 45–53 (2010)CrossRefADSGoogle Scholar
  15. 15.
    Rosenblatt, F.: The Perceptron—A Perceiving and Recognizing Automaton, Rep. 85–460-1, Cornell Aeronautical Laboratory, New York (1957)Google Scholar
  16. 16.
    Minsky, M., Papert, S.: Perceptrons: An Introduction to Computational Geometry. MIT Press, Cambridge (1969)MATHGoogle Scholar
  17. 17.
    Parker, P., Englehart, K., Hugdins, B.: Control of Upper Limb Prosthesis, 1st edn. Wiley-IEEE Press, New York (2004)Google Scholar
  18. 18.
    Jiang, N., Dosen, S., Müller, K.-R., Farina, D.: Myoelectric control of artificial limbs is there a need to change focus? IEEE Signal Process. Mag. 29, 147–150 (2012)ADSGoogle Scholar
  19. 19.
    Siomau, M., Jiang, N.: Myoelectric Control of Artificial Limb by, Quantum Information Processing, arXiv:1302.3934Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Physics DepartmentJazan UniversityJazanKingdom of Saudi Arabia

Personalised recommendations