Quantum Information Processing

, Volume 13, Issue 3, pp 805–813 | Cite as

Flexible protocol for quantum private query based on B92 protocol

  • Yu-Guang Yang
  • Si-Jia Sun
  • Peng Xu
  • Ju Tian


Jakobi et al. for the first time proposed a novel and practical quantum private query (QPQ) protocol based on SARG04 (Scarani et al. in Phys Rev Lett 92:057901, 2004) quantum key distribution protocol (Jakobi et al. in Phys Rev A 83:022301, 2011). Gao et al. generalized Jakobi et al’s protocol and proposed a flexible QPQ protocol (Gao et al. in Opt Exp 20(16):17411–17420, 2012). When \(\theta <\pi /4\), Gao et al’s protocol exhibits better database security than Jakobi et al’s protocol, but has a higher probability with which Bob can correctly guess the address of Alice’s query. In this paper, we propose a flexible B92-based QPQ protocol. Although SARG04 protocol is a modification of B92 protocol and can be seen as a generalization of B92 protocol, our protocol shows different advantages from Gao et al’s protocol. It can simultaneously obtain better database security and a lower probability with which Bob can correctly guess the address of Alice’s query when \(\theta <\pi /4\). By introducing entanglement, the proposed QPQ protocol is robust against channel-loss attack, which also implies lower classical communication complexity. Similar to Gao et al’s protocol, it is flexible, practical, and robust against quantum memory attack.


Quantum private query B92 Flexible 



We thank the anonymous reviewer for his/her constructive suggestions. This work is supported by the National Natural Science Foundation of China (Grant Nos. 61003290, 61202317); Beijing Natural Science Foundation (Grant No. 4122008); Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (No. CIT&TCD201304039).


  1. 1.
    Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. J. Comput. Syst. Sci. 60(3), 592–629 (2000)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: Proceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science, (FOCS 1995), pp. 41–51 (1995)Google Scholar
  3. 3.
    Lo, H.-K.: Insecurity of quantum secure. Phys. Rev. A 56, 1154 (1997)CrossRefADSGoogle Scholar
  4. 4.
    Kerenidis, I., de Wolf, R.: Quantum symmetrically-private information retrieval. Inf. Process. Lett. 90(3), 109–114 (2004)CrossRefMATHGoogle Scholar
  5. 5.
    Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100(23), 230502 (2008)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries: security analysis. IEEE Trans. Inf. Theory 56(7), 3465–3477 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Martini, F.D., Giovannetti, V., Lloyd, S., Maccone, L., Nagali, E., Sansoni, L., Sciarrino, F.: Experimental quantum private queries with linear optics. Phys. Rev. A 80(1), 010302 (2009)Google Scholar
  8. 8.
    Olejnik, L.: Secure quantum private information retrieval using phase-encoded queries. Phys. Rev. A 84(2), 022313 (2011)CrossRefADSGoogle Scholar
  9. 9.
    Jakobi, M., Simon, C., Gisin, N., Bancal, J.D., Branciard, C., Walenta, N., Zbinden, H.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83(2), 022301 (2011)CrossRefADSGoogle Scholar
  10. 10.
    Gao, F., Liu, B., Wen, Q.-Y.: Flexible quantum private queries based on quantum key distribution. Opt. Exp. 20(16), 17411–17420 (2012)Google Scholar
  11. 11.
    Scarani, V., Acin, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for. Phys. Rev. Lett. 92, 057901 (2004)CrossRefADSGoogle Scholar
  12. 12.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)MathSciNetCrossRefADSMATHGoogle Scholar
  13. 13.
    Dodson, D., Fujiwara, M., Grangier, P., Hayashi, M., Imafuku, K., Kitayama, K., Kumar, P., Kurtsiefer, C., Lenhart, G., Luetkenhaus, N., Matsumoto, T., Munro, W., Nishioka, T., Peev, M., Sasaki, M., Sata, Y., Takada, A., Takeoka, M., Tamaki, K., Tanaka, H., Tokura, Y., Tomita, A., Toyoshima, M., Vanmeter, R., Yamagishi, A., Yamamoto, Y., Yamamura, A.: Updating Quantum Cryptography—Report 1, e-print arXiv:0905.4325Google Scholar
  14. 14.
    Dusek, M., Lütkenhaus, N., Hendrich, M.: Quantum cryptography. Prog. Opt. 49, 381 (2006)Google Scholar
  15. 15.
    Raynal, P.: Unambiguous State Discrimination of two density matrices in Quantum Information Theory. e-print arXiv: quant-ph/0611133 (2006)Google Scholar
  16. 16.
    Herzog, U., Bergou, J.A.: Optimum unambiguous discrimination of two mixed quantum states. Phys. Rev. A 71, 050301 (2005)MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.College of Computer Science and TechnologyBeijing University of TechnologyBeijingChina

Personalised recommendations