Advertisement

Quantum Information Processing

, Volume 13, Issue 1, pp 151–169 | Cite as

Violation of the “information–disturbance relationship” in finite-time quantum measurements

  • A. Thilagam
Article
  • 137 Downloads

Abstract

The effect of measurement attributes (quantum level of precision, finite duration) on the classical and quantum correlations is analyzed for a pair of qubits immersed in a common reservoir. We show that the quantum discord is enhanced as the precision of the measuring instrument is increased, and both the classical correlation and the quantum discord experience noticeable changes during finite-time measurements performed on a neighboring partition of the entangled system. The implication of these results on the “information–disturbance relationship” is examined, with critical analysis of the delicate roles played by quantum non-locality and non-Markovian dynamics in the violation of this relationship, which appears surprisingly for a range of measurement attributes. This work highlights that the fundamental limits of quantum mechanical measurements can be altered by exchanges of non-classical correlations such as the quantum discord with external sources, which has relevance to cryptographic technology.

Keywords

Quantum correlations Quantum measurements  Non-Markovian dynamics Information–disturbance relationship   Quantum cryptography 

Notes

Acknowledgments

This research was undertaken on the NCI National Facility in Canberra, Australia, which is supported by the Australian Commonwealth Government. The author gratefully acknowledges the support of the Julian Schwinger Foundation Grant, JSF-12-06-0000. The author would like to thank the anonymous referees for helpful comments.

References

  1. 1.
    von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)MATHGoogle Scholar
  2. 2.
    Zeh, H.D.: On the interpretation of measurement in quantum theory. Found. Phys. 1(1), 69–76 (1970)CrossRefADSGoogle Scholar
  3. 3.
    Kofman, A.G., Kurizki, G.: Acceleration of quantum decay processes by frequent observations. Nature 405(6786), 546–550 (2000)CrossRefADSGoogle Scholar
  4. 4.
    Misra, B., Sudarshan, E.C.G.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756 (1977)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Facchi, P., Pascazio, S.: Quantum Zeno dynamics: mathematical and physical aspects. J. Phys. A: Math. Theor. 41, 493001 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Facchi, P., Pascazio, S.: Quantum Zeno subspaces. Phys. Rev. Lett. 89, 080401 (2002)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Braginsky, V.B., Khalili, F.Ya.: In: Thorne, K.S. (ed.) Quantum Measurement. Cambridge University Press, Cambridge (1992); and references cited thereinGoogle Scholar
  8. 8.
    Mensky, M.B.: Continuous Quantum Measurements and Path-Integrals. Institute of Physics Publishers, Bristol, Philadelphia (1993)Google Scholar
  9. 9.
    Zurek, W.H.: Decoherence and the transition from quantum to classical. Phys. Today 44(10), 36 (1991)CrossRefGoogle Scholar
  10. 10.
    Zurek, W.H.: Environment-induced superselection rules. Phys. Rev. D 26, 1862 (1982)MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition. Springer, Berlin (2008)Google Scholar
  12. 12.
    Ruskov, R., Korotkov, A.N.: Entanglement of solid-state qubits by measurement. Phys. Rev. B 67, 241305(R) (2003)CrossRefADSGoogle Scholar
  13. 13.
    Englert, B.G.: On Quantum Theory. arXiv:quant-ph:arXiv:1308.5290 (2013)Google Scholar
  14. 14.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)CrossRefADSGoogle Scholar
  15. 15.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)MathSciNetCrossRefADSMATHGoogle Scholar
  16. 16.
    Vedral, V.: Classical correlations and entanglement in quantum measurements. Phys. Rev. Lett. 90, 050401 (2003)MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)CrossRefADSGoogle Scholar
  18. 18.
    Brodutch, A., Terno, D.R.: Quantum discord, local operations, and Maxwell’s demons. Phys. Rev. A 81, 062103 (2010)MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Maziero, J., Celeri, L.C., Serra, R.M., Vedral, V.: Classical and quantum correlations under decoherence. Phys. Rev. A 80, 044102 (2009)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    Mazzola, L., Piilo, J., Maniscalco, S.: Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104, 200401 (2010)MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    Ciliberti, L., Rossignoli, R., Canosa, N.: Quantum discord in finite XY chains. Phys. Rev. A 82, 042316 (2010)MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)CrossRefADSGoogle Scholar
  23. 23.
    Sacchi, M.F.: Information–disturbance tradeoff in estimating a maximally entangled state. Phys. Rev. Lett. 96, 220502 (2006)CrossRefADSGoogle Scholar
  24. 24.
    Maccone, L.: Information–disturbance tradeoff in quantum measurements. Phys. Rev. A 73, 042307 (2006)CrossRefADSGoogle Scholar
  25. 25.
    D’Ariano, G.M.: On the Heisenberg principle, namely on the information–disturbance trade-off in a quantum measurement. Fortschritte der Physik 51, 318–330 (2003)MathSciNetCrossRefADSMATHGoogle Scholar
  26. 26.
    Buscemi, F., Sacchi, M.F.: Information–disturbance trade-off in quantum-state discrimination. Phys. Rev. A 74, 052320 (2006)MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    Maccone, L.: Entropic information–disturbance tradeoff. EPL 77, 40002 (2007)MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    Heisenberg, W.: The Physical Principles of the Quantum Theory. Dover, New York (1930)Google Scholar
  29. 29.
    Rozema, L.A., Darabi, A., Mahler, D.H., Hayat, A., Soudagar, Y., Steinberg, A.M.: Violation of Heisenberg’s measurement–disturbance relationship by weak measurements. Phys. Rev. Lett. 109, 100404 (2012)CrossRefADSGoogle Scholar
  30. 30.
    Wolfgramm, F., Vitelli, C., Beduini, F.A., Godbout, N., Mitchell, M.W.: Entanglement-enhanced probing of a delicate material system. Nat. Photonics 7, 28 (2013)CrossRefADSGoogle Scholar
  31. 31.
    Thilagam, A.: Exceptional points and quantum correlations in precise measurements. J. Phys. A 45, 444031 (2012)MathSciNetCrossRefADSGoogle Scholar
  32. 32.
    Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)MATHGoogle Scholar
  33. 33.
    Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367 (1948)MathSciNetCrossRefADSGoogle Scholar
  34. 34.
    Mensky, M.B.: Quantum restrictions for continuous observation of an oscillator. Phys. Rev. D 20, 384 (1979)Google Scholar
  35. 35.
    Mensky, M.B.: Quantum restrictions for continuous observation of an oscillator. Sov. Phys. JETP 50, 667 (1979)Google Scholar
  36. 36.
    Mensky, M.B., Onofrio, R., Presilla, C.: Optimal monitoring of position in nonlinear quantum systems. Phys. Rev. Lett. 70, 2825 (1993)CrossRefADSGoogle Scholar
  37. 37.
    Mensky, M.B., Onofrio, R., Presilla, C.: Continuous quantum monitoring of position of nonlinear oscillators. Phys. Lett. A 161, 236–240 (1991)CrossRefADSGoogle Scholar
  38. 38.
    Onofrio, R., Presilla, C., Tambini, U.: Quantum Zeno effect with the Feynman–Mensky path-integral approach. Phys. Lett. A 183, 135–140 (1993)CrossRefADSGoogle Scholar
  39. 39.
    Tambini, U., Presilla, C., Onofrio, R.: Dynamics of quantum collapse in energy measurements. Phys. Rev. A 51, 967 (1995)CrossRefADSGoogle Scholar
  40. 40.
    Audretsch, J., Mensky, M.: Continuous fuzzy measurement of energy for a two-level system. Phys. Rev. A 56, 44 (1997)CrossRefADSGoogle Scholar
  41. 41.
    Heiss, W.D.: Repulsion of resonance states and exceptional points. Phys. Rev. E 61, 929 (2000)CrossRefADSGoogle Scholar
  42. 42.
    Salles, A., de Melo, F., Almeida, M.P., Hor-Meyll, M., Walborn, S.P., Ribeiro, P.S., Davidovich, L.: Experimental investigation of the dynamics of entanglement: sudden death, complementarity, and continuous monitoring of the environment. Phys. Rev. A 78, 022322 (2008)CrossRefADSGoogle Scholar
  43. 43.
    Sudarshan, E.C.G., Mathews, P.M., Rau, J.: Stochastic dynamics of quantum-mechanical systems. Phys. Rev. 121, 920–924 (1961)MathSciNetCrossRefADSMATHGoogle Scholar
  44. 44.
    Kraus, K.: States, Effects, and Operations: Fundamental Notions of Quantum Theory. Springer, Berlin (1983)CrossRefMATHGoogle Scholar
  45. 45.
    Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964)Google Scholar
  46. 46.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)CrossRefADSGoogle Scholar
  47. 47.
    Bellomo, B., Franco, R.L., Compagno, G.: Dynamics of non-classically-reproducible entanglement. Phys. Rev. A 78, 062309 (2008)CrossRefADSGoogle Scholar
  48. 48.
    Galve, F., Giorgi, G.L., Zambrini, R.: Orthogonal measurements are almost sufficient for quantum discord of two qubits. Europhys. Lett. (EPL) 96, 40005 (2011)CrossRefADSGoogle Scholar
  49. 49.
    Szilard, L.: Uber die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Zeitschrift fr Physik 53(11–12), 840–856 (1929)CrossRefADSMATHGoogle Scholar
  50. 50.
    Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41(12), 2315–2323 (1994)MathSciNetCrossRefADSMATHGoogle Scholar
  51. 51.
    Anandan, J., Aharonov, Y.: Geometry of quantum evolution. Phys. Rev. Lett. 65, 1697 (1990)MathSciNetCrossRefADSMATHGoogle Scholar
  52. 52.
    Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-Markovian quantum dynamics. Phys. Rev. Lett. 101, 150402 (2008)MathSciNetCrossRefADSGoogle Scholar
  53. 53.
    Rajagopal, A.K., Devi, A.U., Rendell, R.W.: Kraus representation of quantum evolution and fidelity as manifestations of Markovian and non-Markovian forms. Phys. Rev. A 82, 042107 (2010)CrossRefADSGoogle Scholar
  54. 54.
    Breuer, H.P., Laine, E.M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)MathSciNetCrossRefADSGoogle Scholar
  55. 55.
    Hall, M.A., Altepeter, J.B., Kumar, P.: Drop-in compatible entanglement for optical-fiber networks. Opt. Express 17, 14558–14566 (2009)CrossRefADSGoogle Scholar
  56. 56.
    Tittel, W., Brendel, J., Zbinden, H., Gisin, N.: Violation of Bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3563 (1998)CrossRefADSGoogle Scholar
  57. 57.
    Caruso, F., Chin, A.W., Datta, A., Huelga, S.F., Plenio, M.B.: Highly efficient energy excitation transfer in light-harvesting complexes: the fundamental role of noise-assisted transport. J. Chem. Phys. 131, 105106–105106 (2009)CrossRefADSGoogle Scholar
  58. 58.
    Rebentrost, P., Mohseni, M., Aspuru-Guzik, A.: Role of quantum coherence and environmental fluctuations in chromophoric energy transport. J. Phys. Chem. B 113, 9942–9947 (2009)CrossRefGoogle Scholar
  59. 59.
    Thilagam, A.: Non-Hermitian exciton dynamics in a photosynthetic unit system. J. Chem. Phys. 136, 065104 (2012)CrossRefADSGoogle Scholar
  60. 60.
    Thilagam, A.: Multipartite entanglement in the Fenna–Matthews–Olson (FMO) pigment–protein complex. J. Chem. Phys. 136, 175104 (2012)CrossRefADSGoogle Scholar
  61. 61.
    Thilagam, A., Usha Devi, A.R.: Non-Markovianity and Clauser–Horne–Shimony–Holt (CHSH)-Bell inequality violation in quantum dissipative systems. J. Chem. Phys. 137, 215103–215103 (2012)CrossRefADSGoogle Scholar
  62. 62.
    Caram, J.R., Lewis, N.H., Fidler, A.F., Engel, G.S.: Signatures of correlated excitonic dynamics in two-dimensional spectroscopy of the Fenna–Matthew–Olson photosynthetic complex. J. Chem. Phys. 137, 024507 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Information Technology, Engineering and Environment, Mawson InstituteUniversity of South AustraliaAdelaideAustralia

Personalised recommendations