Advertisement

Quantum Information Processing

, Volume 13, Issue 2, pp 547–557 | Cite as

Quantum computation in the decoherence-free subspaces with cavity QED

  • Yue-Yue Chen
  • Xun-Li Feng
  • C. H. Oh
Article

Abstract

We present a scheme to implement quantum computation in decoherence-free subspaces (DFSs) with four atoms in a single-mode cavity. A four-dimensional DFS is constituted to protect quantum information when the full symmetry of interaction between system and environment is broken in a specific way, and entangling two-qubit logic gates and noncommuting single-qubit gates are implemented in such DFS. The gate fidelity is numerically calculated, and the feasibility of the approximations taken in this work is verified based on the numerical calculations.

Keywords

Cavity Mode Phase Gate Cavity Decay Logical Qubit Physical Qubits 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is supported by the NSFC under Grant No. 11074079, the Ph.D. Programs Foundation of Ministry of Education of China, and National Research Foundation and Ministry of Education, Singapore, under research Grant No. WBS: R-710-000-008-271.

References

  1. 1.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)CrossRefADSGoogle Scholar
  3. 3.
    Grover, L.K.: Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79, 4709–4712 (1997)CrossRefADSGoogle Scholar
  4. 4.
    Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Duan, L.M., Guo, G.C.: Preserving coherence in quantum computation by pairing quantum bits. Phys. Rev. Lett. 79, 1953–1956 (1997)CrossRefADSGoogle Scholar
  6. 6.
    Lidar, D.A., Bacon, D., Kempe, J., Whaley, K.B.: Decoherence-free subspaces for multiple-qubit errors: I. Characterization. Phys. Rev. A 63, 022306 (2001)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Shabani, A., Lidar, D.A.: Theory of initialization-free decoherence-free subspaces and subsystems. Phys. Rev. A 72, 042303 (2005)Google Scholar
  8. 8.
    Brion, E., Pedersen, L.H., Mølmer, K., Chutia, S., Saffman, M.: Universal quantum computation in a neutral-atom decoherence-free subspace. Phys. Rev. A 75, 032328 (2007)CrossRefADSGoogle Scholar
  9. 9.
    Aolita, L., Davidovich, L., Kim, K., Häffner, H.: Universal quantum computation in decoherence-free subspaces with hot trapped ions. Phys. Rev. A 75, 052337 (2007)CrossRefADSGoogle Scholar
  10. 10.
    Brown, K.R., Vala, J., Whaley, K.B.: Scalable ion trap quantum computation in decoherence-free subspaces with pairwise interactions only. Phys. Rev. A 67, 012309 (2003)CrossRefADSGoogle Scholar
  11. 11.
    Cen, L.-X., Wang, Z.D., Wang, S.J.: Scalable quantum computation in decoherence-free subspaces with trapped ions. Phys. Rev. A 74, 032321 (2006)CrossRefADSGoogle Scholar
  12. 12.
    Zhang, X.D.: Physical implementation of holonomic quantum computation in decoherence-free subspaces with trapped ions. Phys. Rev. A 74, 034302 (2006)Google Scholar
  13. 13.
    Wu, C.F., Feng, X.-L., Yi, X.X., Chen, I.M., Oh, C.H.: Quantum gate operation in the decoherence free subspace of SQUID. Phys. Rev. A 78, 062321 (2008)CrossRefADSGoogle Scholar
  14. 14.
    Brion, E., Pedersen, L.H., MØlmer, K.: Universal quantum computation in a neutral-atom decoherence-free subspace. Phys. Rev. A 75, 032328 (2007)CrossRefADSGoogle Scholar
  15. 15.
    Feng, X.-L., Wu, C.F., Sun, H., Oh, C.H.: Geometric entangling gates in decoherence-free subspaces with minimal requirements. Phys. Rev. Lett. 103, 200501 (2009)CrossRefADSGoogle Scholar
  16. 16.
    Chen, Y.-Y., Feng, X.-L., Oh, C.H.: Geometric entangling gates for coupled cavity system in decoherence-free subspaces. Opt. Commun. 285, 5554 (2012)CrossRefADSGoogle Scholar
  17. 17.
    James, D.F.V.: Quantum computation with hot and cold ions: an assessment of proposed schemes. Fortschritte Der Physik (Prog. Phys.) 48, 823 (2000)Google Scholar
  18. 18.
    Zheng, S.-B., Guo, G.-C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392–2395 (2000)CrossRefADSGoogle Scholar
  19. 19.
    McKeever, J., Buck, J.R., Boozer, A.D., et al.: State-insensitive cooling and trapping of single atoms in an optical cavity. Phys. Rev. Lett. 90, 133602 (2003)CrossRefADSGoogle Scholar
  20. 20.
    Dubin, F., Russo, C., Barros, H.G., Stute, A., Becher, C., Schmidt, P.O., Blatt, R.: Quantum to classical transition in a single-ion laser. Nature Phys. 6, 350 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.State Key Laboratory for High-Field Laser Physics, Shanghai Institute of Optical and Fine MechanicsChinese Academy of SciencesShanghaiChina
  2. 2.Laboratory of Photonic Information Technology, LQIT and SIPSESouth China Normal UniversityGuangzhouChina
  3. 3.Department of Physics and Centre for Quantum TechnologiesNational University of SingaporeSingaporeSingapore

Personalised recommendations