Quantum Information Processing

, Volume 13, Issue 2, pp 527–545 | Cite as

Quantum decoherence of Dirac fields in non-inertial frames beyond the single-mode approximation

  • S. A. A. Ghorashi
  • M. H. Aminjavaheri
  • M. Bagheri Harouni


The effects of Quantum decoherence on Dirac fields in an accelerated frame are studied beyond the single-mode approximation. The decoherence phenomena are investigated through the quantum channel approach using the amplitude damping channel and the dephasing one. The entanglement and purity are two distinct quantum features which are investigated. We have assumed that only the non-inertial observer experiences decoherence phenomena. The associated effects of the acceleration, damping rate, and dephasing rate are considered. It is found that acceleration and decoherence rates will decrease the degree of entanglement and purity. It turns out that beyond the single-mode approximation, the maximal entangled state cannot be achieved. Moreover, a comparison between the damping and dephasing processes is done which reveals the fact that damping effects on the entanglement are stronger than dephasing effects, whereas dephasing has stronger effects on the purity.


Entanglement Decoherence Non-inertial frame Linear entropy 


  1. 1.
    Audretsch, J.: Entangeled Systems, New Directions in Quantum Physics. Wiley-VCH, Weinheim (2007)MATHGoogle Scholar
  2. 2.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)CrossRefADSGoogle Scholar
  3. 3.
    Joos, E., Zeh, H.D., Kiefer, C., Giulini, D.J.W., Stamatescu, I.O.: Decoherence and the Appearence of a Classical World in Quantum Theory, 2nd edn. Springer, Berlin (2003)CrossRefMATHGoogle Scholar
  4. 4.
    Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003)MathSciNetCrossRefADSMATHGoogle Scholar
  5. 5.
    Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93–123 (2004)MathSciNetCrossRefADSMATHGoogle Scholar
  6. 6.
    Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460–2473 (1976)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Peres, A., Scudo, P.F., Terno, D.R.: Quantum entropy and special relativity. Phy. Rev. Lett. 88, 230402 (2002)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Gingrich, R.M., Adami, C.: Quantum entanglement of moving bodies. Phys. Rev. Lett. 89, 270402 (2002)CrossRefGoogle Scholar
  9. 9.
    Gingrich, R.M., Bergou, A.J., Adami, C.: Entangled light in moving frames. Phys. Rev. A 68, 042102 (2003)CrossRefADSGoogle Scholar
  10. 10.
    Alsing, P.M., Milburn, G.J.: Teleportation with a uniformly accelerated partner. Phys. Rev. Lett. 91, 180404 (2003)CrossRefADSGoogle Scholar
  11. 11.
    Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006)CrossRefADSGoogle Scholar
  13. 13.
    Doukas, J., Hollenberg, L.C.L.: Loss of spin entanglement for accelerated electrons in electric and magnetic fields. Phys. Rev. A 79, 052109 (2009)CrossRefADSGoogle Scholar
  14. 14.
    Martin-Martinez, E., Garay, L.J., Leon, J.: Unveiling quantum entanglement degradation near a Schwarzschild black hole. Phys. Rev. D 82, 064006 (2010)CrossRefADSGoogle Scholar
  15. 15.
    Hwang, M., Park, D., Jung, E.: Tripartite entanglement in a noninertial frame. Phys. Rev. A 83, 012111 (2011)CrossRefADSGoogle Scholar
  16. 16.
    Wang, J., Jing, J.: Multipartite entanglement of fermionic systems in noninertial frames. Phys. Rev. A 83, 022314 (2011)CrossRefADSGoogle Scholar
  17. 17.
    Nasr Esfahani, B., Shamirzaie, M., Soltani, M.: Reduction of entanglement degradation in Einstein–Gauss–Bonnet gravity. Phys. Rev. D 84, 025024 (2011)CrossRefADSGoogle Scholar
  18. 18.
    Shamirzaie, M., Nasr Esfahani, B., Soltani, M.: Tripartite entanglements in noninertial frames. Int. J. Theor. Phys. 51, 787–804 (2012)CrossRefMATHGoogle Scholar
  19. 19.
    Nasr Esfahani, B., Dehdashti, S.: Gravitational spin entropy production. Int. J. Theor. Phys. 46, 1495–1505 (2007)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Bruschi, D.E., Louko, J., Martin-Martinez, E., Dragan, A., Fuentes, I.: Unruh effect in quantum information beyond the single-mode approximation. Phys. Rev. A 82, 042332 (2010)CrossRefADSGoogle Scholar
  21. 21.
    Martin-Martinez, E., Fuentes, I.: Redistribution of particle and antiparticle entanglement in noninertial frames. Phys. Rev. A 83, 052306 (2011)CrossRefADSGoogle Scholar
  22. 22.
    Bruschi, D.E., Dragan, A., Fuentes, I., Louko, J.: Particle and antiparticle bosonic entanglement in noninertial frames. Phys. Rev. D 86, 025026 (2012)CrossRefADSGoogle Scholar
  23. 23.
    Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870–982 (1976)CrossRefADSGoogle Scholar
  24. 24.
    Davies, P.C.W.: Scalar production in Schwarzschild and Rindler metrics. J. Phys. A: Math. Gen. 8, 609–617 (1975)CrossRefADSGoogle Scholar
  25. 25.
    Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)MATHGoogle Scholar
  26. 26.
    Wang, J., Jing, J.: Quantum decoherence in noninertial frames. Phys. Rev. A 82, 032324 (2010)MathSciNetCrossRefADSMATHGoogle Scholar
  27. 27.
    Wang, J., Jing, J.: System-environment dynamics of X-type states in noninertial frames. Ann. Phys. 327, 283–291 (2012)CrossRefADSMATHGoogle Scholar
  28. 28.
    Tian, Z., Jing, J.: How the Unruh effect affects transition between classical and quantum decoherences. Phys. Lett. B 707, 264–271 (2012)CrossRefADSGoogle Scholar
  29. 29.
    Zhang, W., Deng, J., Jing, J.: Dependence of entanglement on initial states under amplitude damping channel in non-inertial frames. J. Quan. Inf. Sci. 2, 23–27 (2012)Google Scholar
  30. 30.
    Ramzan, M.: Entanglement dynamics of non-inertial observers in a correlated environment. Quantum Inf. Process. 12, 83–95 (2013)MathSciNetCrossRefADSMATHGoogle Scholar
  31. 31.
    Ramzan, M., Khan, M.K.: Decoherence and entanglement degradation of a qubit-qutrit system in non-inertial frames. Quantum Inf. Process. 11, 443–454 (2012)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Ramzan, M.: Decoherence dynamics of geometric measure of quantum discord and measurement induced nonlocality for noninertial observers at finite temperature M. Ramzan. Quantum. Inf. Processing 12, 2721–2738 (2013)MathSciNetCrossRefADSMATHGoogle Scholar
  33. 33.
    Friis, N., Köhler, P., Martin-Martinez, E., Bertlmann, R.A.: Residual entanglement of accelerated fermions is not nonlocal. Phys. Rev. A 84, 062111 (2011)CrossRefADSGoogle Scholar
  34. 34.
    Montero, M., Martin-Martinez, E.: The entangling side of the Unruh–Hawking effect. J. High Energy Phys. 07, 006 (2011)MathSciNetCrossRefADSMATHGoogle Scholar
  35. 35.
    Chang, J., Kwon, Y.: Entanglement behavior of quantum states of fermionic systems in an accelerated frame. Phys. Rev. A 85, 032302 (2012)CrossRefADSGoogle Scholar
  36. 36.
    Martin-Martinez, E., Hosler, D., Montero, M.: Fundamental limitations to information transfer in accelerated frames. Phys. Rev. A 86, 062307 (2012)CrossRefADSGoogle Scholar
  37. 37.
    Tian, Z., Jing, J.: Measurement-induced-nonlocality via the Unruh effect. Ann. Phys. 333, 76–89 (2013)MathSciNetCrossRefADSMATHGoogle Scholar
  38. 38.
    Salles, A., Melo, F., Almeidal, M.P., Hor-Meyll, M., Walborn, S.P., Souto Riberio, P.H., Davidovich, L.: Experimental investigation of the dynamics of entanglement: sudden death, complementarity, and continuous monitoring of the environment. Phys. Rev. A 78, 022322 (2008)CrossRefADSGoogle Scholar
  39. 39.
    Takagi, S.: Vacuum noise and stress induced by uniform acceleration: Hawking–Unruh effect in Rindler manifold of arbitrary dimension. Prog. Theor. Phys. Suppl. 88, 1–142 (1986)CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    Jauregui, R., Torres, M., Hacyan, S.: Dirac vacuum: acceleration and external-field effects. Phys. Rev. D 43, 3979–3989 (1991)CrossRefADSGoogle Scholar
  41. 41.
    Langlois, P.: Hawking radiation for Dirac spinors on the RP3 geon. Phys. Rev. D 70, 104008 (2004)MathSciNetCrossRefADSGoogle Scholar
  42. 42.
    Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge, UK (1984)MATHGoogle Scholar
  43. 43.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRefMATHGoogle Scholar
  44. 44.
    Carmichael, H.: An Open Systems Approach to Quantum Optics. Springer, Berlin (1993)MATHGoogle Scholar
  45. 45.
    Alicki, R., Fannes, M.: Quantum Dynamical Systems. Oxford University Press, Oxford (2001)CrossRefMATHGoogle Scholar
  46. 46.
    Kraus, K.: State, Effects and Operations: Fundamental Notations of Quantum Theory. Springer, Berlin (1983)CrossRefGoogle Scholar
  47. 47.
    Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys 73, 565–582 (2001)MathSciNetCrossRefADSMATHGoogle Scholar
  48. 48.
    Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)CrossRefADSGoogle Scholar
  49. 49.
    Barnett, S.M.: Quantum Information. Oxford University Press, Oxford (2009)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • S. A. A. Ghorashi
    • 1
  • M. H. Aminjavaheri
    • 2
  • M. Bagheri Harouni
    • 2
    • 3
  1. 1.Department of physicsUniversity of HoustonHoustonUSA
  2. 2.Department of Physics, Faculty of ScienceUniversity of IsfahanIsfahan Iran
  3. 3.Department of Physics, Quantum Optics GroupUniversity of IsfahanIsfahanIran

Personalised recommendations