Skip to main content
Log in

Quantum decoherence of Dirac fields in non-inertial frames beyond the single-mode approximation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The effects of Quantum decoherence on Dirac fields in an accelerated frame are studied beyond the single-mode approximation. The decoherence phenomena are investigated through the quantum channel approach using the amplitude damping channel and the dephasing one. The entanglement and purity are two distinct quantum features which are investigated. We have assumed that only the non-inertial observer experiences decoherence phenomena. The associated effects of the acceleration, damping rate, and dephasing rate are considered. It is found that acceleration and decoherence rates will decrease the degree of entanglement and purity. It turns out that beyond the single-mode approximation, the maximal entangled state cannot be achieved. Moreover, a comparison between the damping and dephasing processes is done which reveals the fact that damping effects on the entanglement are stronger than dephasing effects, whereas dephasing has stronger effects on the purity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Audretsch, J.: Entangeled Systems, New Directions in Quantum Physics. Wiley-VCH, Weinheim (2007)

    MATH  Google Scholar 

  2. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  3. Joos, E., Zeh, H.D., Kiefer, C., Giulini, D.J.W., Stamatescu, I.O.: Decoherence and the Appearence of a Classical World in Quantum Theory, 2nd edn. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  4. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93–123 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460–2473 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  7. Peres, A., Scudo, P.F., Terno, D.R.: Quantum entropy and special relativity. Phy. Rev. Lett. 88, 230402 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  8. Gingrich, R.M., Adami, C.: Quantum entanglement of moving bodies. Phys. Rev. Lett. 89, 270402 (2002)

    Article  Google Scholar 

  9. Gingrich, R.M., Bergou, A.J., Adami, C.: Entangled light in moving frames. Phys. Rev. A 68, 042102 (2003)

    Article  ADS  Google Scholar 

  10. Alsing, P.M., Milburn, G.J.: Teleportation with a uniformly accelerated partner. Phys. Rev. Lett. 91, 180404 (2003)

    Article  ADS  Google Scholar 

  11. Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  12. Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006)

    Article  ADS  Google Scholar 

  13. Doukas, J., Hollenberg, L.C.L.: Loss of spin entanglement for accelerated electrons in electric and magnetic fields. Phys. Rev. A 79, 052109 (2009)

    Article  ADS  Google Scholar 

  14. Martin-Martinez, E., Garay, L.J., Leon, J.: Unveiling quantum entanglement degradation near a Schwarzschild black hole. Phys. Rev. D 82, 064006 (2010)

    Article  ADS  Google Scholar 

  15. Hwang, M., Park, D., Jung, E.: Tripartite entanglement in a noninertial frame. Phys. Rev. A 83, 012111 (2011)

    Article  ADS  Google Scholar 

  16. Wang, J., Jing, J.: Multipartite entanglement of fermionic systems in noninertial frames. Phys. Rev. A 83, 022314 (2011)

    Article  ADS  Google Scholar 

  17. Nasr Esfahani, B., Shamirzaie, M., Soltani, M.: Reduction of entanglement degradation in Einstein–Gauss–Bonnet gravity. Phys. Rev. D 84, 025024 (2011)

    Article  ADS  Google Scholar 

  18. Shamirzaie, M., Nasr Esfahani, B., Soltani, M.: Tripartite entanglements in noninertial frames. Int. J. Theor. Phys. 51, 787–804 (2012)

    Article  MATH  Google Scholar 

  19. Nasr Esfahani, B., Dehdashti, S.: Gravitational spin entropy production. Int. J. Theor. Phys. 46, 1495–1505 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bruschi, D.E., Louko, J., Martin-Martinez, E., Dragan, A., Fuentes, I.: Unruh effect in quantum information beyond the single-mode approximation. Phys. Rev. A 82, 042332 (2010)

    Article  ADS  Google Scholar 

  21. Martin-Martinez, E., Fuentes, I.: Redistribution of particle and antiparticle entanglement in noninertial frames. Phys. Rev. A 83, 052306 (2011)

    Article  ADS  Google Scholar 

  22. Bruschi, D.E., Dragan, A., Fuentes, I., Louko, J.: Particle and antiparticle bosonic entanglement in noninertial frames. Phys. Rev. D 86, 025026 (2012)

    Article  ADS  Google Scholar 

  23. Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870–982 (1976)

    Article  ADS  Google Scholar 

  24. Davies, P.C.W.: Scalar production in Schwarzschild and Rindler metrics. J. Phys. A: Math. Gen. 8, 609–617 (1975)

    Article  ADS  Google Scholar 

  25. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  26. Wang, J., Jing, J.: Quantum decoherence in noninertial frames. Phys. Rev. A 82, 032324 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Wang, J., Jing, J.: System-environment dynamics of X-type states in noninertial frames. Ann. Phys. 327, 283–291 (2012)

    Article  ADS  MATH  Google Scholar 

  28. Tian, Z., Jing, J.: How the Unruh effect affects transition between classical and quantum decoherences. Phys. Lett. B 707, 264–271 (2012)

    Article  ADS  Google Scholar 

  29. Zhang, W., Deng, J., Jing, J.: Dependence of entanglement on initial states under amplitude damping channel in non-inertial frames. J. Quan. Inf. Sci. 2, 23–27 (2012)

    Google Scholar 

  30. Ramzan, M.: Entanglement dynamics of non-inertial observers in a correlated environment. Quantum Inf. Process. 12, 83–95 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Ramzan, M., Khan, M.K.: Decoherence and entanglement degradation of a qubit-qutrit system in non-inertial frames. Quantum Inf. Process. 11, 443–454 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ramzan, M.: Decoherence dynamics of geometric measure of quantum discord and measurement induced nonlocality for noninertial observers at finite temperature M. Ramzan. Quantum. Inf. Processing 12, 2721–2738 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Friis, N., Köhler, P., Martin-Martinez, E., Bertlmann, R.A.: Residual entanglement of accelerated fermions is not nonlocal. Phys. Rev. A 84, 062111 (2011)

    Article  ADS  Google Scholar 

  34. Montero, M., Martin-Martinez, E.: The entangling side of the Unruh–Hawking effect. J. High Energy Phys. 07, 006 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Chang, J., Kwon, Y.: Entanglement behavior of quantum states of fermionic systems in an accelerated frame. Phys. Rev. A 85, 032302 (2012)

    Article  ADS  Google Scholar 

  36. Martin-Martinez, E., Hosler, D., Montero, M.: Fundamental limitations to information transfer in accelerated frames. Phys. Rev. A 86, 062307 (2012)

    Article  ADS  Google Scholar 

  37. Tian, Z., Jing, J.: Measurement-induced-nonlocality via the Unruh effect. Ann. Phys. 333, 76–89 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Salles, A., Melo, F., Almeidal, M.P., Hor-Meyll, M., Walborn, S.P., Souto Riberio, P.H., Davidovich, L.: Experimental investigation of the dynamics of entanglement: sudden death, complementarity, and continuous monitoring of the environment. Phys. Rev. A 78, 022322 (2008)

    Article  ADS  Google Scholar 

  39. Takagi, S.: Vacuum noise and stress induced by uniform acceleration: Hawking–Unruh effect in Rindler manifold of arbitrary dimension. Prog. Theor. Phys. Suppl. 88, 1–142 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  40. Jauregui, R., Torres, M., Hacyan, S.: Dirac vacuum: acceleration and external-field effects. Phys. Rev. D 43, 3979–3989 (1991)

    Article  ADS  Google Scholar 

  41. Langlois, P.: Hawking radiation for Dirac spinors on the RP3 geon. Phys. Rev. D 70, 104008 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  42. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge, UK (1984)

    MATH  Google Scholar 

  43. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  44. Carmichael, H.: An Open Systems Approach to Quantum Optics. Springer, Berlin (1993)

    MATH  Google Scholar 

  45. Alicki, R., Fannes, M.: Quantum Dynamical Systems. Oxford University Press, Oxford (2001)

    Book  MATH  Google Scholar 

  46. Kraus, K.: State, Effects and Operations: Fundamental Notations of Quantum Theory. Springer, Berlin (1983)

    Book  Google Scholar 

  47. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys 73, 565–582 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  49. Barnett, S.M.: Quantum Information. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bagheri Harouni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghorashi, S.A.A., Aminjavaheri, M.H. & Bagheri Harouni, M. Quantum decoherence of Dirac fields in non-inertial frames beyond the single-mode approximation. Quantum Inf Process 13, 527–545 (2014). https://doi.org/10.1007/s11128-013-0668-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0668-8

Keywords

Navigation