Quantum Information Processing

, Volume 13, Issue 2, pp 491–502 | Cite as

An arbitrated quantum signature scheme with fast signing and verifying



Existing arbitrated quantum signature (AQS) schemes are almost all based on the Leung quantum one-time pad (L-QOTP) algorithm. In these schemes, the receiver can achieve an existential forgery of the sender’s signatures under the known message attack, and the sender can successfully disavow any of her/his signatures by a simple attack. In this paper, a solution of solving the problems is given, through designing a new QOTP algorithm relying largely on inserting decoy states into fixed insertion positions. Furthermore, we present an AQS scheme with fast signing and verifying, which is based on the new QOTP algorithm. It is just using single particle states and is unconditional secure. To fulfill the functions of AQS schemes, our scheme needs a significantly lower computational costs than that required by other AQS schemes based on the L-QOTP algorithm.


Arbitrated quantum signature (AQS) Quantum one-time pad (QOTP) Decoy state 



This work is supported by NSFC (Grant Nos. 61272057, 61202434, 61170270, 61100203, 61003286, 61121061), NCET (Grant No. NCET-10-0260), Beijing Natural Science Foundation (Grant Nos. 4112040, 4122054), the Fundamental Research Funds for the Central Universities (Grant No. 2012RC0612, 2011YB01).


  1. 1.
    Gottesman, D., Chuang, I.L.: Quantum digital signatures. e-print arXiv:quant-ph/0105032Google Scholar
  2. 2.
    Barnum, H., Crépeau, C., Gottesman, D., et al.: Authentication of quantum messages. In: Proceedings of the 43rd Annual IEEE Symposium on the Foundations of Computer Science, 449. IEEE Computer Society Press, Washington, DC (2002) e-print arXiv:quant-ph/0205128Google Scholar
  3. 3.
    Buhrman, H., Cleve, R., Watrous, J., et al.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)CrossRefADSGoogle Scholar
  4. 4.
    Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Curty, Marcos, Ltkenhaus, Norbert: Comment on “Arbitrated quantum-signature scheme”. Phys. Rev. A 77(4), 046301 (2008)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Gao, F., Qin, S.J., Guo, F.Z., et al.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011)CrossRefADSGoogle Scholar
  7. 7.
    Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84(6), 062330 (2011)CrossRefADSGoogle Scholar
  8. 8.
    Hwang, T., Luo, Y.P., Chong, S.K.: Comment on “Security analysis and improvements of arbitrated quantum signature schemes”. Phys. Rev. A 85(5), 056301 (2012)CrossRefADSGoogle Scholar
  9. 9.
    Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. 12(8), 2655 (2013)MathSciNetCrossRefADSMATHGoogle Scholar
  10. 10.
    Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82(4), 042325 (2010)MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Zeng, G.H.: Reply to Comment on “Arbitrated quantum-signature scheme”. Phys. Rev. A 78(1), 016301 (2008)MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Li, Q., Li, C.Q., Wen, Z.H., et al.: On the security of arbitrated quantum signature schemes. J. Phys. A Math. Theor. 46(1), 015307 (2013)MathSciNetCrossRefADSMATHGoogle Scholar
  14. 14.
    Li, Q., Du, R.G., Long, D.Y., Wang, C.J., Chan, W.H.: Entanglement enhances the security of arbitrated quantum signature. Int. J. Quantum Inf. 7(5), 913 (2009)CrossRefMATHGoogle Scholar
  15. 15.
    Li, Q., Li, C.Q., Long, D.Y., et al.: Efficient arbitrated quantum signature and its proof of security. Quantum Inf. Process. 12(7), 2427 (2013)MathSciNetCrossRefADSMATHGoogle Scholar
  16. 16.
    Leung, D.W.: Quantum vernam cipher. Quantum Inf. Comput. 2(1), 14 (2002)MathSciNetMATHGoogle Scholar
  17. 17.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, p. 175. IEEE, New York (1984)Google Scholar
  18. 18.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121 (1992)MathSciNetCrossRefADSMATHGoogle Scholar
  19. 19.
    Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050 (1999)CrossRefADSGoogle Scholar
  20. 20.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)CrossRefADSGoogle Scholar
  21. 21.
    Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)CrossRefADSGoogle Scholar
  22. 22.
    Zhang, K.J., Qin, S.J., Sun, Y., et al.: Reexamination of arbitrated quantum signature: the impossible and the possible. Quantum Inf. Process. 12(9), 3127 (2013)MathSciNetCrossRefADSMATHGoogle Scholar
  23. 23.
    Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376(45), 2944 (2012)CrossRefADSGoogle Scholar
  24. 24.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New Delhi (2008)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.The State Key Laboratory of Integrated Services NetworksXidian UniversityXi’anChina
  3. 3.School of Mathematics and Statistics ScienceLudong UniversityYantaiChina

Personalised recommendations