Skip to main content
Log in

The effect of electric field on an asymmetric quantum dot qubit

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

On the condition of strong electron–LO phonon coupling in an asymmetric quantum dot (QD), we study the eigenenergies and eigenfunctions of the ground and the first excited states under an applied electric field by using variational method of Pekar type. This QD system may be used as a two-level qubit. When the electron is in the superposition state of the ground and the first excited states, we obtain the time evolution of the electron probability density, which oscillates in the QD. It is found that due to the presence of the 3-D anisotropic harmonic potentials in the transverse and longitudinal directions of the QD, the electron probability density shows double-peak configuration, whereas there is only one peak if the confinement is 2-D symmetric in the x- and y-directions. The oscillation period is an increasing function of the transverse and longitudinal effective confinement lengths of the QD, and decreases with respect to the electron–phonon coupling strength and the electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kamada, H., Gotoh, H.: Quantum computation with quantum dot excitons. Semicond. Sci. Technol. 19, S392–S396 (2004)

    Article  ADS  Google Scholar 

  2. Li, S.S., Xia, J.B.: Effective-mass theory for coupled quantum dots grown on (11N)-oriented substrates. Chin. Phys. 16, 1–5 (2007)

    Article  MATH  ADS  Google Scholar 

  3. Liu, Y.F., Xiao, J.L.: The effects of LO phonons on charge qubit. Phys. B 403, 3013–3017 (2008)

    Article  ADS  Google Scholar 

  4. Sikorski, C., Merkt, U.: Spectroscopy of electronic states in InSb quantum dots. Phys. Rev. Lett. 62, 2164–2167 (1989)

    Article  ADS  Google Scholar 

  5. Lorke, A., Kotthaus, J.P., Ploog, K.: Coupling of quantum dots on GaAs. Phys. Rev. Lett. 64, 2559–2562 (1990)

    Article  ADS  Google Scholar 

  6. Normura, S., Kobayashi, T.: Exciton–LO–phonon couplings in spherical semiconductor microcrystallites. Phys. Rev. B 45, 1305–1316 (1992)

    Article  ADS  Google Scholar 

  7. Li, S.S., Xia, J.B.: Electronic structure and binding energy of a hydrogenic impurity in a hierarchically self-assembled GaAs/\(\text{ Al }_{{\rm x}}\text{ Ga }_{1-{\rm x}}\) As quantum dot. J. Appl. Phys. 100, 083714 (2006)

    Article  ADS  Google Scholar 

  8. Chi, F., Li, S.S.: Spin-polarized transport through an Aharonov–Bohm interferometer with Rashba spin-orbit interaction. J. Appl. Phys. 99, 043705 (2006)

    Article  ADS  Google Scholar 

  9. Sun, J.K., Li, H.J., Xiao, J.L.: The temperature effect of the triangular bound potential quantum dot qubit. Superlatt. Microstruct. 46, 476–482 (2009)

    Article  ADS  Google Scholar 

  10. Berman, G.P., Doolen, G.D., Tsifrinovich, V.I.: Solid-state quantum computation—a new direction for nanotechnology. Superlatt. Microstruct. 27, 89–104 (2000)

    Article  ADS  Google Scholar 

  11. Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74, 4083–4086 (1995)

    Article  ADS  Google Scholar 

  12. Lis, S.S., Xia, J.B., Liu, J.L., Yang, F.H., Niu, Z.C., Feng, S.L., Zheng, H.Z.: InAs/GaAs single-electron quantum dot qubit. J. Appl. Phys. 90, 6151–6155 (2001)

    Article  ADS  Google Scholar 

  13. Li, S.S., Long, G.L., Bai, F.S., Feng, S.L., Zheng, H.Z.: Quantum computing. Proc. Natl. Acad. Sci. USA 98, 11847–11848 (2001)

    Article  ADS  Google Scholar 

  14. Chen, Y.J., Xiao, J.L.: Temperature effects of parabolic linear bound potential and Coulomb bound potential quantum dot qubit. Commun. Theor. Phys. 52, 601–605 (2009)

    Article  MATH  ADS  Google Scholar 

  15. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)

    Article  ADS  Google Scholar 

  16. Xiao, J.L.: Influences of temperature and coulomb bound potential on the properties of quantum rod qubit. Superlatt. Microstruct. 60, 248–256 (2013)

    Article  ADS  Google Scholar 

  17. Li, W.P., Yin, J.W., Yu, Y.F., Wang, Z.W., Xiao, J.L.: The effect of magnetic on the properties of a parabolic quantum dot qubit. J. Low. Temp. Phys. 160, 112–118 (2010)

    Article  ADS  Google Scholar 

  18. Yin, J.W., Xiao, J.L., Yu, Y.F., Wang, Z.W.: The influence of electric field on a parabolic quantum dot qubit. Chin. Phys. B 18, 446–450 (2009)

    Article  ADS  Google Scholar 

  19. Wang, Z.W., Xiao, J.L.: Parabolic linear bound potential quantum dot qubit and its optical phonon effect. Acta. Phys. Sin. 56, 678–682 (2007) (in Chinese)

    Google Scholar 

  20. Wang, Z.W., Li, W.P., Yin, J.W., Xiao, J.L.: Properties of parabolic linear bound potential and Coulomb bound potential quantum dot qubit. Commun. Theor. Phys. 49, 311–314 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Science Foundation of China under Grant No. 10964005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Lin Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, JL. The effect of electric field on an asymmetric quantum dot qubit. Quantum Inf Process 12, 3707–3716 (2013). https://doi.org/10.1007/s11128-013-0631-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0631-8

Keywords

Navigation