Quantum Information Processing

, Volume 12, Issue 12, pp 3707–3716 | Cite as

The effect of electric field on an asymmetric quantum dot qubit

  • Jing-Lin Xiao


On the condition of strong electron–LO phonon coupling in an asymmetric quantum dot (QD), we study the eigenenergies and eigenfunctions of the ground and the first excited states under an applied electric field by using variational method of Pekar type. This QD system may be used as a two-level qubit. When the electron is in the superposition state of the ground and the first excited states, we obtain the time evolution of the electron probability density, which oscillates in the QD. It is found that due to the presence of the 3-D anisotropic harmonic potentials in the transverse and longitudinal directions of the QD, the electron probability density shows double-peak configuration, whereas there is only one peak if the confinement is 2-D symmetric in the x- and y-directions. The oscillation period is an increasing function of the transverse and longitudinal effective confinement lengths of the QD, and decreases with respect to the electron–phonon coupling strength and the electric field.


Asymmetric quantum dot Qubit Electric field Variational method of Pekar type 



This project was supported by the National Science Foundation of China under Grant No. 10964005.


  1. 1.
    Kamada, H., Gotoh, H.: Quantum computation with quantum dot excitons. Semicond. Sci. Technol. 19, S392–S396 (2004)CrossRefADSGoogle Scholar
  2. 2.
    Li, S.S., Xia, J.B.: Effective-mass theory for coupled quantum dots grown on (11N)-oriented substrates. Chin. Phys. 16, 1–5 (2007)MATHCrossRefADSGoogle Scholar
  3. 3.
    Liu, Y.F., Xiao, J.L.: The effects of LO phonons on charge qubit. Phys. B 403, 3013–3017 (2008)CrossRefADSGoogle Scholar
  4. 4.
    Sikorski, C., Merkt, U.: Spectroscopy of electronic states in InSb quantum dots. Phys. Rev. Lett. 62, 2164–2167 (1989)CrossRefADSGoogle Scholar
  5. 5.
    Lorke, A., Kotthaus, J.P., Ploog, K.: Coupling of quantum dots on GaAs. Phys. Rev. Lett. 64, 2559–2562 (1990)CrossRefADSGoogle Scholar
  6. 6.
    Normura, S., Kobayashi, T.: Exciton–LO–phonon couplings in spherical semiconductor microcrystallites. Phys. Rev. B 45, 1305–1316 (1992)CrossRefADSGoogle Scholar
  7. 7.
    Li, S.S., Xia, J.B.: Electronic structure and binding energy of a hydrogenic impurity in a hierarchically self-assembled GaAs/\(\text{ Al }_{{\rm x}}\text{ Ga }_{1-{\rm x}}\) As quantum dot. J. Appl. Phys. 100, 083714 (2006)CrossRefADSGoogle Scholar
  8. 8.
    Chi, F., Li, S.S.: Spin-polarized transport through an Aharonov–Bohm interferometer with Rashba spin-orbit interaction. J. Appl. Phys. 99, 043705 (2006)CrossRefADSGoogle Scholar
  9. 9.
    Sun, J.K., Li, H.J., Xiao, J.L.: The temperature effect of the triangular bound potential quantum dot qubit. Superlatt. Microstruct. 46, 476–482 (2009)CrossRefADSGoogle Scholar
  10. 10.
    Berman, G.P., Doolen, G.D., Tsifrinovich, V.I.: Solid-state quantum computation—a new direction for nanotechnology. Superlatt. Microstruct. 27, 89–104 (2000)CrossRefADSGoogle Scholar
  11. 11.
    Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74, 4083–4086 (1995)CrossRefADSGoogle Scholar
  12. 12.
    Lis, S.S., Xia, J.B., Liu, J.L., Yang, F.H., Niu, Z.C., Feng, S.L., Zheng, H.Z.: InAs/GaAs single-electron quantum dot qubit. J. Appl. Phys. 90, 6151–6155 (2001)CrossRefADSGoogle Scholar
  13. 13.
    Li, S.S., Long, G.L., Bai, F.S., Feng, S.L., Zheng, H.Z.: Quantum computing. Proc. Natl. Acad. Sci. USA 98, 11847–11848 (2001)CrossRefADSGoogle Scholar
  14. 14.
    Chen, Y.J., Xiao, J.L.: Temperature effects of parabolic linear bound potential and Coulomb bound potential quantum dot qubit. Commun. Theor. Phys. 52, 601–605 (2009)MATHCrossRefADSGoogle Scholar
  15. 15.
    Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)CrossRefADSGoogle Scholar
  16. 16.
    Xiao, J.L.: Influences of temperature and coulomb bound potential on the properties of quantum rod qubit. Superlatt. Microstruct. 60, 248–256 (2013)CrossRefADSGoogle Scholar
  17. 17.
    Li, W.P., Yin, J.W., Yu, Y.F., Wang, Z.W., Xiao, J.L.: The effect of magnetic on the properties of a parabolic quantum dot qubit. J. Low. Temp. Phys. 160, 112–118 (2010)CrossRefADSGoogle Scholar
  18. 18.
    Yin, J.W., Xiao, J.L., Yu, Y.F., Wang, Z.W.: The influence of electric field on a parabolic quantum dot qubit. Chin. Phys. B 18, 446–450 (2009)CrossRefADSGoogle Scholar
  19. 19.
    Wang, Z.W., Xiao, J.L.: Parabolic linear bound potential quantum dot qubit and its optical phonon effect. Acta. Phys. Sin. 56, 678–682 (2007) (in Chinese)Google Scholar
  20. 20.
    Wang, Z.W., Li, W.P., Yin, J.W., Xiao, J.L.: Properties of parabolic linear bound potential and Coulomb bound potential quantum dot qubit. Commun. Theor. Phys. 49, 311–314 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.College of Physics and Electronic InformationInner Mongolian National UniversityTongliaoChina

Personalised recommendations