Advertisement

Quantum Information Processing

, Volume 12, Issue 11, pp 3495–3509 | Cite as

Fault tolerant authenticated quantum direct communication immune to collective noises

  • Chun-Wei Yang
  • Tzonelih Hwang
Article

Abstract

This study proposes two new coding functions for GHZ states and GHZ-like states, respectively. Based on these coding functions, two fault tolerant authenticated quantum direct communication (AQDC) protocols are proposed. Each of which is robust under one kind of collective noises: collective-dephasing noise and collective-rotation noise, respectively. Moreover, the proposed AQDC protocols enable a sender to send a secure as well as authenticated message to a receiver within only one step quantum transmission without using the classical channels.

Keywords

Authentication Collective noise GHZ state Quantum cryptography Quantum direct communication 

Notes

Acknowledgments

We would like to thank the National Science Council of the Republic of China, Taiwan for partially supporting this research in finance under the Contract No. NSC 100-2221-E-006-152-MY3.

References

  1. 1.
    Lee, H., Lim, J., Yang, H.: Quantum direct communication with authentication. Phys. Rev. A 73(4), 042305 (2006)Google Scholar
  2. 2.
    Zhang, Z.J., Liu, J., Wang, D., Shi, S.H.: Comment on “Quantum direct communication with authentication”. Phys. Rev. A 75(2), 026301 (2007)Google Scholar
  3. 3.
    Liu, W.J., Chen, H.W., Li, Z.Q., Liu, Z.H.: Efficient quantum secure direct communication with authentication. Chin. Phys. Lett. 25(7), 2354–2357 (2008)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Qin, S.-J., Wen, Q.-Y., Meng, L.-M., Zhu, F.-C.: High efficiency of two efficient QSDC with authentication is at the cost of their security. Chin. Phys. Lett. 26(2), 020312 (2009)Google Scholar
  5. 5.
    Yen, C.A., Horng, S.J., Goan, H.S., Kao, T.W., Chou, Y.H.: Quantum direct communication with mutual authentication. Quantum Inf. Comput. 9(5–6), 376–394 (2009)MATHMathSciNetGoogle Scholar
  6. 6.
    Liu, D., Pei, C.X., Quan, D.X., Zhao, N.: A new quantum secure direct communication scheme with authentication. Chin. Phys. Lett. 27(5), 050306 (2010)Google Scholar
  7. 7.
    Yang, J., Wang, C.A., Zhang, R.: Quantum secure direct communication with authentication expansion using single photons. Commun. Theor. Phys. 54(5), 829–834 (2010)MATHMathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Sun, Z.-W., Du, R.-G., Long, D.-Y.: Quantum secure direct communication with quantum identification. Int. J. Quantum Inf. 10(1), 1250008 (2012)Google Scholar
  9. 9.
    Tsai, C.W., Wei, T.S., Hwang, T.: One-way quantum authenticated secure communication using rotation operation. Commun. Theor. Phys. 56(6), 1023–1026 (2011)MATHCrossRefADSGoogle Scholar
  10. 10.
    Yang, C.-W., Hwang, T., Lin, T.-H.: Modification attack on QSDC with authentication and the improvement. Int. J. Theor. Phys. 52(7), 2230–2234 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2008)CrossRefADSGoogle Scholar
  12. 12.
    Boileau, J.C., Gottesman, D., Laflamme, R., Poulin, D., Spekkens, R.W.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92(1), 017901 (2004)CrossRefADSGoogle Scholar
  13. 13.
    Sun, Y., Wen, Q.Y., Gao, F., Zhu, F.C.: Robust variations of the Bennett–Brassard 1984 protocol against collective noise. Phys. Rev. A 80(3), 032321 (2009)CrossRefADSGoogle Scholar
  14. 14.
    Xiu, X.M., Dong, L., Gao, Y.J., Chi, F.: Quantum key distribution protocols with six-photon states against collective noise. Opt. Commun. 282(20), 4171–4174 (2009)CrossRefADSGoogle Scholar
  15. 15.
    Li, X.H., Zhao, B.K., Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int. J. Quantum Inf. 7(8), 1479–1489 (2009)MATHCrossRefGoogle Scholar
  16. 16.
    Li, C.Y., Li, Y.S.: Fault-tolerate quantum key distribution over a collective-noise channel. Int. J. Quantum Inf. 8(7), 1101–1109 (2010)MATHCrossRefGoogle Scholar
  17. 17.
    Cabello, A.: Six-qubit permutation-based decoherence-free orthogonal basis. Phys. Rev. A 75(2), 020301 (2007)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    Zhang, Z.J.: Robust multiparty quantum secret key sharing over two collective-noise channels. Phys. A 361(1), 233–238 (2006)CrossRefADSGoogle Scholar
  19. 19.
    Sun, Y., Wen, Q.Y., Zhu, F.C.: Improving the multiparty quantum secret sharing over two collective-noise channels against insider attack. Opt. Commun. 283(1), 181–183 (2010)CrossRefADSGoogle Scholar
  20. 20.
    Gu, B., Mu, L.L., Ding, L.G., Zhang, C.Y., Li, C.Q.: Fault tolerant three-party quantum secret sharing against collective noise. Opt. Commun. 283(15), 3099–3103 (2010)CrossRefADSGoogle Scholar
  21. 21.
    Yang, C.-W., Tsai, C.-W., Hwang, T.: Thwarting intercept-and-resend attack on Zhang’s quantum secret sharing using collective rotation noises. Quantum Inf. Process. 11(1), 113–122 (2012)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Yang, C.-W., Tsai, C.-W., Hwang, T.: Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China Phys. 54(3), 496–501 (2011)CrossRefGoogle Scholar
  23. 23.
    Yang, C.-W., Hwang, T.: Improved QSDC protocol over a collective-dephasing noise channel. Int. J. Theor. Phys. 51(12), 3941–3950 (2012)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Yang, C.-W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12(6), 2131–2142 (2013)MATHMathSciNetCrossRefADSGoogle Scholar
  25. 25.
    Wang, T.-Y., Wen, Q.-Y., Zhu, F.-C.: Secure authentication of classical messages with decoherence-free states. Opt. Commun. 282(16), 3382–3385 (2009)CrossRefADSGoogle Scholar
  26. 26.
    Cai, X.-Q., Liu, Q.-Q.: Robust message authentication over a collective-noise channel. Int. J. Quantum Inf. 10(6), 1250064 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Computer Science and Information EngineeringNational Cheng Kung UniversityTainan CityTaiwan, ROC

Personalised recommendations