Quantum Information Processing

, Volume 12, Issue 11, pp 3449–3475 | Cite as

Linear dependencies in Weyl–Heisenberg orbits

  • Hoan Bui Dang
  • Kate Blanchfield
  • Ingemar Bengtsson
  • D. M. Appleby


Five years ago, Lane Hughston showed that some of the symmetric informationally complete positive operator valued measures (SICs) in dimension 3 coincide with the Hesse configuration (a structure well known to algebraic geometers, which arises from the torsion points of a certain elliptic curve). This connection with elliptic curves is signalled by the presence of linear dependencies among the SIC vectors. Here we look for analogous connections between SICs and algebraic geometry by performing computer searches for linear dependencies in higher dimensional SICs. We prove that linear dependencies will always emerge in Weyl–Heisenberg orbits when the fiducial vector lies in a certain subspace of an order 3 unitary matrix. This includes SICs when the dimension is divisible by 3 or equal to 8 mod 9. We examine the linear dependencies in dimension 6 in detail and show that smaller dimensional SICs are contained within this structure, potentially impacting the SIC existence problem. We extend our results to look for linear dependencies in orbits when the fiducial vector lies in an eigenspace of other elements of the Clifford group that are not order 3. Finally, we align our work with recent studies on representations of the Clifford group.


SIC-POVMs Weyl–Heisenberg group Elliptic curves   Hesse configuration Linear dependencies 



IB and KB thank Markus Grassl for taking an interest in this problem when we visited Singapore, and especially for drawing our attention to the linear dependencies in the “odd” SIC in eight dimensions. We also thank a referee for constructive comments. HBD was supported by the Natural Sciences and Engineering Research Council of Canada and by the U.S. Office of Naval Research (Grant No. N00014-09-1-0247). IB was supported by the Swedish Research Council under contract VR 621-2010-4060. DMA was supported in part by the U.S. Office of Naval Research (Grant No. N00014-09-1-0247) and by the John Templeton Foundation. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research & Innovation.


  1. 1.
    Zauner, G.: Quantendesigns. Grundzüge einer nichtkommutativen Designtheorie PhD thesis, Univ. Wien (1999); English translation Quantum Designs: Foundations of a Non-commutative Design Theory Int. J. Quant. Inf. 9, 445 (2011)Google Scholar
  2. 2.
    Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171 (2004)MATHMathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Scott, A.J.: Tight informationally complete quantum measurements. J. Phys. A 39, 13507 (2006)MATHMathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Zhu, H., Englert, B.-G.: Quantum state tomography with fully symmetric measurements and product measurements. Phys. Rev. A 84, 022327 (2011)CrossRefADSGoogle Scholar
  5. 5.
    Fuchs, C.A., Sasaki, M.: Squeezing quantum information through a classical channel: measuring the quantumness of a set of quantum states. Quantum Inf. Comput. 3, 377 (2003)MATHMathSciNetGoogle Scholar
  6. 6.
    Oreshkov, O., Calsamiglia, J., Muñoz-Tapia, R., Bagan, E.: Optimal signal states for quantum detectors. New J. Phys. 13, 073032 (2011)CrossRefADSGoogle Scholar
  7. 7.
    Englert, B.-G., Kaszlikowski, D., Ng, H.K., Chua, W.K., Řeháček, J., Anders, J.: Efficient and robust quantum key distribution with minimal state tomography arXiv:0412075 (2004)Google Scholar
  8. 8.
    Durt, T., Kurtsiefer, C., Lamas-Linares, A., Ling, A.: Wigner tomography of two-qubit states and quantum cryptography. Phys. Rev. A 78, 042338 (2008)CrossRefADSGoogle Scholar
  9. 9.
    Howard, S.D., Calderbank, A.R., Moran, W.: The finite Heisenberg-Weyl groups in radar and communications. EURASIP J. Appl. Signal Process. 2006, 85865 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hermann, M.A., Strohmer, T.: High-resolution Radar via compressed sensing. IEEE Trans. Signal Process. 57, 2275 (2009)MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Balan, R., Bodmann, B.G., Casazza, P.G., Edidin, D.: Painless reconstruction from magnitudes of frame coefficients. J. Fourier Anal. Appl. 15, 488 (2009)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Scott, A.J., Grassl, M.: SICs: a new computer study. J. Math. Phys. 51, 042203 (2010)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Appleby, D.M., Bengtsson, I., Brierley, S., Grassl, M., Gross, D., Larsson, J.-Å.: The monomial representations of the Clifford group. Quantum Inf. Comput. 12, 0404 (2012)MathSciNetGoogle Scholar
  14. 14.
    Appleby, D.M., Bengtsson, I., Brierley, S. Ericsson, Å., Grassl, M., Larsson, J.-Å.: Systems of Imprimitivity for the Clifford, Group arXiv:1210.1055 (2012)Google Scholar
  15. 15.
    Zhu, H.: SIC-POVMs and Clifford groups in prime dimensions. J. Phys. A: Math. Theor. 43, 305305 (2010)CrossRefGoogle Scholar
  16. 16.
    Fuchs, C.A., Schack, R. (2009). Quantum-Bayesian Coherence arXiv:0906.2187v1Google Scholar
  17. 17.
    Appleby, D.M.: SIC-POVMs and the extended Clifford group. J. Math. Phys. 46, 052107 (2005)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    Appleby, D.M., Yadsan-Appleby, H., Zauner, G.: Galois Automorphisms of a Symmetric, Measurement arXiv:1209.1813 (2012)Google Scholar
  19. 19.
    Mumford, D.: Tata Lectures on Theta, vols. I, II, and III, Birkhaüser (1983, 1984, 1991)Google Scholar
  20. 20.
    Hughston, L.: d=3 SIC-POVMs and Elliptic Curves, Perimeter Institute, Seminar Talk, available online at (2007)
  21. 21.
    Pfander, G.E.: Gabor frames in finite dimensions. In: Casazza, P.G., Kutyniok, G. (eds.) Finite Frames: Theory and Applications. Birkhäser, Boston (2013)Google Scholar
  22. 22.
    Lawrence, J., Pfander, G.E., Walnut, D.: Linear independence of Gabor systems in finite dimensional vector spaces. J. Fourier Anal. Appl. 11, 715 (2005)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Malikiosis, R.-D.: A note on Gabor frames in finite dimensions arXiv:1304.7709 (2013)Google Scholar
  24. 24.
    Flammia, S.: On SIC-POVMs in prime dimensions. J. Phys. A 39, 13483 (2006)MATHMathSciNetCrossRefADSGoogle Scholar
  25. 25.
    Hesse, O.: Über die Wendepuncte der Curven dritter Ordnung. J. Reine Angew. Math. 28, 97 (1844)MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Artebani, M., Dolgachev, I.: The Hesse pencil of plane cubic curves. L’Enseignement Math. 55, 235 (2009)MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Wootters, W.K.: A Wigner-function formulation of finite-state quantum mechanics. Ann. Phys. NY 176, 1 (1987)MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    Bengtsson, I.: From SICs and MUBs to Eddington. J. Phys. Conf. Ser. 254, 012007 (2010)CrossRefADSGoogle Scholar
  29. 29.
    Alltop, W.O.: Complex sequences with low periodic correlations. IEEE Trans. Inf. Theory 26, 350 (1980)MATHMathSciNetCrossRefADSGoogle Scholar
  30. 30.
    Blanchfield, K.: Mutually unbiased bases, Weyl–Heisenberg orbits and the distance between them. AIP Conf. Proc. 1508, 359 (2012)CrossRefADSGoogle Scholar
  31. 31.
    Grassl, M.: Private CommunicationGoogle Scholar
  32. 32.
    Rose, H.E.: A Course in Number Theory. Oxford University Press, Oxford (1994)Google Scholar
  33. 33.
    Appleby, D.M.: Properties of the Extended Clifford Group with Applications to SIC-POVMs and MUBs arXiv:0909.5233 (2009)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Hoan Bui Dang
    • 1
    • 2
  • Kate Blanchfield
    • 3
  • Ingemar Bengtsson
    • 3
  • D. M. Appleby
    • 1
  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.Physics DepartmentUniversity of WaterlooWaterlooCanada
  3. 3.Stockholms UniversitetStockholmSweden

Personalised recommendations