Skip to main content
Log in

Reexamination of arbitrated quantum signature: the impossible and the possible

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

As a new model for signing both quantum and classical messages, the arbitrated quantum signature (AQS) protocols have recently attracted a lot of attentions. In this paper, we analyze their security from an important security aspect—the receiver’s forgery of the signature, and provide a detailed proof of the fact that the attempt to design an improved optimal encryption used in AQS cannot prevent the receiver’s forgery attack unless some assistant security strategies are introduced. In order to show that, we firstly summarize an explicit formalization of the general AQS model and propose the necessary and sufficient conditions against the receiver’s forgery attack. Then a contradiction of them has been pointed out. In order to complete our security analysis, we verify that the AQS protocols for signing classic messages are still susceptible to the receiver’s forgery. Finally, some assistant security strategies are provided to recover the security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Google Scholar 

  2. Grover, L.K.: A fast quantum mechanical algorithm for, database search, http://quant-ph/9605043v3 (1996)

  3. Gisin, N., Ribordy, G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179. IEEE Press, New York (1984)

  5. Ekert, A.K.: Quantum cryptography based on bell theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Google Scholar 

  7. Bennett, C.H., Brassard, G., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53–58 (2006)

    Article  ADS  MATH  Google Scholar 

  9. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  ADS  Google Scholar 

  10. Hillery, M., Buzĕk, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  11. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  12. Jiang, M., Huang, X., Zhou, L.L., Zhou, Y.M., Zeng, J.: An efficient scheme for multi-party quantum state sharing via non-maximally entangled states. Chin. Sci. Bull. 57(10), 1089–1094 (2012)

    Article  Google Scholar 

  13. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Google Scholar 

  14. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Google Scholar 

  15. Lin, S., Wen, Q.Y., Zhu, F.C.: Quantum secure direct communication with X-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Google Scholar 

  16. Li, J., Jin, H.F., Jing, B.: Improved eavesdropping detection strategy based on four-particle cluster state in quantum direct communication protocol. Chin. Sci. Bull. 57(34), 4434–4441 (2012)

    Article  Google Scholar 

  17. Song, S.Y., Wang, C.: Recent development in quantum communication. Chin. Sci. Bull. 57(36), 4694–4700 (2012)

    Google Scholar 

  18. Gottesman, D., Chuang, I.: Quantum Digital Signatures, http://quant-ph/0105032v2 (2001)

  19. Buhrman, H., Cleve, R., Watrous, J., et al.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)

    Google Scholar 

  20. Buhrman, H., Crepeau, C., Gottesman, D., et al.: Authentication of Quantum Messages, pp. 449–458. IEEE Computer Society Press, Washington DC (2002)

    Google Scholar 

  21. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)

    Google Scholar 

  22. Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67, 042317 (2003)

    Google Scholar 

  23. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)

    Google Scholar 

  24. Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82, 042325 (2010)

    Google Scholar 

  25. Yang, Y.G., Wen, Q.Y.: Threshold proxy quantum signature scheme with threshold shared verification. Sci. Chin. Ser. G Phys. Mech. Astron 51, 1079–1088 (2008)

    Article  ADS  MATH  Google Scholar 

  26. Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Proc. 11, 455–463 (2012)

    Article  ADS  Google Scholar 

  27. Shi, J.H., Zhang, S.L., Chang, Z.G.: The security analysis of a threshold proxy quantum signature scheme. Sci. China Phys. Mech. Astron. 56(3), 519–523 (2013)

    Article  ADS  Google Scholar 

  28. Wen, X.J., Tian, Y., Ji, L.P., Niu, X.M.: A group signature scheme based on quantum teleportation. Phys. Scr. 81, 055001 (2010)

    Google Scholar 

  29. Wen, X.J.: Quantum group blind signature scheme without entanglement. Phys. Scr. 82, 065403 (2010)

    Google Scholar 

  30. Xu, R., Huang, L.S., Yang, W., He, L.B.: Quantum group blind signature scheme without entanglement. Opt. Commun. 284, 3654–3658 (2011)

    Article  ADS  Google Scholar 

  31. Wang, T.Y., Wen, Q.Y.: Fair quantum blind signatures. Chin. Phys. B 19, 060307 (2010)

    Google Scholar 

  32. Wen, X.J., Niu, X.M., Ji, L.P., Tian, Y.: A weak blind signature scheme based on quantum cryptography. Opt. Commun. 282, 666–669 (2009)

    Article  ADS  Google Scholar 

  33. Yang, Y.G.: Multi-proxy quantum group signature scheme with threshold shared verification. Chin. Phys. B 17, 415 (2008)

    Google Scholar 

  34. Yang, Y.G., Wang, Y., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Scalable arbitrated quantum signature of classical messages with multi-signers. Commun. Theor. Phys. 54, 84 (2010)

    Google Scholar 

  35. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)

    Google Scholar 

  36. Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84, 062330 (2011)

    Google Scholar 

  37. Cai, Q.Y.: The “Ping-Pong” protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91, 109801 (2003)

    Google Scholar 

  38. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Consistency of shared reference frames should be reexamined. Phys. Rev. A 77, 014302 (2008)

    Google Scholar 

  39. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)

    Google Scholar 

  40. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Google Scholar 

  41. Hwang, T., Luo, Y.P., Chong, S.K.: Comment on “security analysis and improvements of arbitrated quantum signature schemes”. Phys. Rev. A 85, 056301 (2012)

    Google Scholar 

  42. Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Proc. doi:10.1007/s11128-013-0554-4

  43. Liang, M., Yang, L.: Public-key encryption and authentication of quantum information. Sci. China Phys. Mech. Astron. 55(9), 1618–1629 (2012)

    Article  ADS  Google Scholar 

  44. Salemian, S., Mohammadnejad, S.: An error-free protocol for quantum entanglement distribution in long-distance quantum communication. Chin. Sci. Bull. 56(7), 618–625 (2011)

    Article  Google Scholar 

  45. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “experimental demonstration of a quantum protocol for Byzantine agreement and Liar detection”. Phys. Rev. Lett. 101, 208901 (2008)

    Google Scholar 

  46. Zhang, Y.S., Li, C.F., Guo, G.C.: Comment on “quantum key distribution without alternative measurements”. Phys. Rev. A 63, 036301 (2001)

    Google Scholar 

  47. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the bradler-dusek protocol. Quantum Inf. Comput. 7, 329 (2007)

    Google Scholar 

  48. Gao, F., Wen, Q.Y., Zhu, F.C.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17, 3189 (2008)

    Google Scholar 

  49. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Dense-coding attack on three-party quantum key distribution protocols. IEEE J. Quantum Electron. 47, 630 (2011)

    Google Scholar 

  50. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101 (2006)

    Google Scholar 

  51. W’ojcik, A.: Eavesdropping on the ping-pong quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)

    Google Scholar 

  52. W’ojcik, A.: Comment on “quantum dense key distribution”. Phys. Rev. A 71, 016301 (2005)

    Google Scholar 

  53. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on “quantum exam”. Phys. Lett. A 360, 748 (2007)

    Google Scholar 

  54. Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: A special eavesdropping on one-sender versus N-receiver QSDC protocol. Chin. Phys. Lett. 25, 1561 (2008)

    Google Scholar 

  55. Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283, 192 (2010)

    Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC (Grant Nos. 61103210, 61272057, 61202434, 61170270, 61100203, 61003286, 61121061), NCET (Grant No. NCET-10-0260), Beijing Natural Science Foundation (Grant Nos. 4112040, 4122054), the Fundamental Research Funds for the Central Universities (Grant Nos. 2011YB01, 2012RC0612).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Jia Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, KJ., Qin, SJ., Sun, Y. et al. Reexamination of arbitrated quantum signature: the impossible and the possible. Quantum Inf Process 12, 3127–3141 (2013). https://doi.org/10.1007/s11128-013-0589-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0589-6

Keywords

Navigation