Quantum Information Processing

, Volume 12, Issue 9, pp 3127–3141 | Cite as

Reexamination of arbitrated quantum signature: the impossible and the possible

  • Ke-Jia Zhang
  • Su-Juan Qin
  • Ying Sun
  • Ting-Ting Song
  • Qi Su


As a new model for signing both quantum and classical messages, the arbitrated quantum signature (AQS) protocols have recently attracted a lot of attentions. In this paper, we analyze their security from an important security aspect—the receiver’s forgery of the signature, and provide a detailed proof of the fact that the attempt to design an improved optimal encryption used in AQS cannot prevent the receiver’s forgery attack unless some assistant security strategies are introduced. In order to show that, we firstly summarize an explicit formalization of the general AQS model and propose the necessary and sufficient conditions against the receiver’s forgery attack. Then a contradiction of them has been pointed out. In order to complete our security analysis, we verify that the AQS protocols for signing classic messages are still susceptible to the receiver’s forgery. Finally, some assistant security strategies are provided to recover the security.


Arbitrated quantum signature Forgery attack Security analysis 



This work is supported by NSFC (Grant Nos. 61103210, 61272057, 61202434, 61170270, 61100203, 61003286, 61121061), NCET (Grant No. NCET-10-0260), Beijing Natural Science Foundation (Grant Nos. 4112040, 4122054), the Fundamental Research Funds for the Central Universities (Grant Nos. 2011YB01, 2012RC0612).


  1. 1.
    Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)Google Scholar
  2. 2.
    Grover, L.K.: A fast quantum mechanical algorithm for, database search, http://quant-ph/9605043v3 (1996)
  3. 3.
    Gisin, N., Ribordy, G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179. IEEE Press, New York (1984)Google Scholar
  5. 5.
    Ekert, A.K.: Quantum cryptography based on bell theorem. Phys. Rev. Lett. 67, 661–663 (1991)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)Google Scholar
  7. 7.
    Bennett, C.H., Brassard, G., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53–58 (2006)ADSMATHCrossRefGoogle Scholar
  9. 9.
    Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    Hillery, M., Buzĕk, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Jiang, M., Huang, X., Zhou, L.L., Zhou, Y.M., Zeng, J.: An efficient scheme for multi-party quantum state sharing via non-maximally entangled states. Chin. Sci. Bull. 57(10), 1089–1094 (2012)CrossRefGoogle Scholar
  13. 13.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)Google Scholar
  14. 14.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)Google Scholar
  15. 15.
    Lin, S., Wen, Q.Y., Zhu, F.C.: Quantum secure direct communication with X-type entangled states. Phys. Rev. A 78, 064304 (2008)Google Scholar
  16. 16.
    Li, J., Jin, H.F., Jing, B.: Improved eavesdropping detection strategy based on four-particle cluster state in quantum direct communication protocol. Chin. Sci. Bull. 57(34), 4434–4441 (2012)CrossRefGoogle Scholar
  17. 17.
    Song, S.Y., Wang, C.: Recent development in quantum communication. Chin. Sci. Bull. 57(36), 4694–4700 (2012)Google Scholar
  18. 18.
    Gottesman, D., Chuang, I.: Quantum Digital Signatures, http://quant-ph/0105032v2 (2001)
  19. 19.
    Buhrman, H., Cleve, R., Watrous, J., et al.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)Google Scholar
  20. 20.
    Buhrman, H., Crepeau, C., Gottesman, D., et al.: Authentication of Quantum Messages, pp. 449–458. IEEE Computer Society Press, Washington DC (2002)Google Scholar
  21. 21.
    Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)Google Scholar
  22. 22.
    Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67, 042317 (2003)Google Scholar
  23. 23.
    Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)Google Scholar
  24. 24.
    Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82, 042325 (2010)Google Scholar
  25. 25.
    Yang, Y.G., Wen, Q.Y.: Threshold proxy quantum signature scheme with threshold shared verification. Sci. Chin. Ser. G Phys. Mech. Astron 51, 1079–1088 (2008)ADSMATHCrossRefGoogle Scholar
  26. 26.
    Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Proc. 11, 455–463 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Shi, J.H., Zhang, S.L., Chang, Z.G.: The security analysis of a threshold proxy quantum signature scheme. Sci. China Phys. Mech. Astron. 56(3), 519–523 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Wen, X.J., Tian, Y., Ji, L.P., Niu, X.M.: A group signature scheme based on quantum teleportation. Phys. Scr. 81, 055001 (2010)Google Scholar
  29. 29.
    Wen, X.J.: Quantum group blind signature scheme without entanglement. Phys. Scr. 82, 065403 (2010)Google Scholar
  30. 30.
    Xu, R., Huang, L.S., Yang, W., He, L.B.: Quantum group blind signature scheme without entanglement. Opt. Commun. 284, 3654–3658 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Wang, T.Y., Wen, Q.Y.: Fair quantum blind signatures. Chin. Phys. B 19, 060307 (2010)Google Scholar
  32. 32.
    Wen, X.J., Niu, X.M., Ji, L.P., Tian, Y.: A weak blind signature scheme based on quantum cryptography. Opt. Commun. 282, 666–669 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Yang, Y.G.: Multi-proxy quantum group signature scheme with threshold shared verification. Chin. Phys. B 17, 415 (2008)Google Scholar
  34. 34.
    Yang, Y.G., Wang, Y., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Scalable arbitrated quantum signature of classical messages with multi-signers. Commun. Theor. Phys. 54, 84 (2010)Google Scholar
  35. 35.
    Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)Google Scholar
  36. 36.
    Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84, 062330 (2011)Google Scholar
  37. 37.
    Cai, Q.Y.: The “Ping-Pong” protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91, 109801 (2003)Google Scholar
  38. 38.
    Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Consistency of shared reference frames should be reexamined. Phys. Rev. A 77, 014302 (2008)Google Scholar
  39. 39.
    Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)Google Scholar
  40. 40.
    Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)Google Scholar
  41. 41.
    Hwang, T., Luo, Y.P., Chong, S.K.: Comment on “security analysis and improvements of arbitrated quantum signature schemes”. Phys. Rev. A 85, 056301 (2012)Google Scholar
  42. 42.
    Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Proc. doi: 10.1007/s11128-013-0554-4
  43. 43.
    Liang, M., Yang, L.: Public-key encryption and authentication of quantum information. Sci. China Phys. Mech. Astron. 55(9), 1618–1629 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    Salemian, S., Mohammadnejad, S.: An error-free protocol for quantum entanglement distribution in long-distance quantum communication. Chin. Sci. Bull. 56(7), 618–625 (2011)CrossRefGoogle Scholar
  45. 45.
    Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “experimental demonstration of a quantum protocol for Byzantine agreement and Liar detection”. Phys. Rev. Lett. 101, 208901 (2008)Google Scholar
  46. 46.
    Zhang, Y.S., Li, C.F., Guo, G.C.: Comment on “quantum key distribution without alternative measurements”. Phys. Rev. A 63, 036301 (2001)Google Scholar
  47. 47.
    Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the bradler-dusek protocol. Quantum Inf. Comput. 7, 329 (2007)Google Scholar
  48. 48.
    Gao, F., Wen, Q.Y., Zhu, F.C.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17, 3189 (2008)Google Scholar
  49. 49.
    Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Dense-coding attack on three-party quantum key distribution protocols. IEEE J. Quantum Electron. 47, 630 (2011)Google Scholar
  50. 50.
    Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101 (2006)Google Scholar
  51. 51.
    W’ojcik, A.: Eavesdropping on the ping-pong quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)Google Scholar
  52. 52.
    W’ojcik, A.: Comment on “quantum dense key distribution”. Phys. Rev. A 71, 016301 (2005)Google Scholar
  53. 53.
    Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on “quantum exam”. Phys. Lett. A 360, 748 (2007)Google Scholar
  54. 54.
    Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: A special eavesdropping on one-sender versus N-receiver QSDC protocol. Chin. Phys. Lett. 25, 1561 (2008)Google Scholar
  55. 55.
    Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283, 192 (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ke-Jia Zhang
    • 1
  • Su-Juan Qin
    • 1
  • Ying Sun
    • 2
  • Ting-Ting Song
    • 1
  • Qi Su
    • 1
  1. 1.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.Beijing Electronic Science and Technology InstituteBeijingChina

Personalised recommendations