Advertisement

Quantum Information Processing

, Volume 12, Issue 7, pp 2587–2601 | Cite as

Non-classicality versus channel capacity for a superposition of entangled coherent states

  • A. El Allati
  • S. Robles-Pérez
  • Y. Hassouni
  • P. F. González-Díaz
Article

Abstract

The entropy and Mandel function as entanglement predictable of multipartite entangled coherent states are studied. The possibility of using these states as quantum channel to perform quantum teleportation is investigated. Quantum teleportation is achieved by using both even and odd entangled coherent states in the presence of environmental noise. The effect of the field’s parameters are investigated on the fidelity of the teleported state.

Keywords

Quantum teleportation Entanglement Coherent states Decoherence 

Notes

Acknowledgments

A.E.A, would like to thank N. Metwally and the referee for their important remarks and discussions which improve the manuscript from different aspects. He acknowledges the hospitality of the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy. S.R.P. was partially supported by the Basque Government project IT-221-07.

References

  1. 1.
    Bennett, H., Brassard, G., Crepeau, C., Jozsa, R., Pweres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Bennett, C.H., Brassard, G.: Proceedings IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, IEEE, New York, pp. 175–179 (1984)Google Scholar
  3. 3.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. Lett. 47, 777–780 (1935)ADSMATHGoogle Scholar
  4. 4.
    Braunstein, S.L., Kimble, H.J.: Kimble, teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869–872 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    Pirandola, S., Mancini, S.: Quantum teleportation with continuous variable: a survey. Laser Phys. 16, 1418 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Janszky, J., Vinogradov, A.V.: Squeezing via one-dimensional distribution of coherent states. Phys. Rev. Lett. 64, 2771–2774 (1990)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Buzek, V., Vidiella-Barranco, A., Knight, P.L.: Superpositions of coherent states: squeezing and dissipation. Phys. Rev. A 45, 6570–6585 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    Buzek, V., Knight, P.L.: The origin of squeezing in a superposition of coherent states. Opt. Commun. 81, 331–335 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    Adam, P., Janszky, J.: Coherent state expansion of squeezed states. Phys. Lett. A 149, 67–70 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    Stoler, D.: Equivalence classes of minimum uncertainty packets. Phys. Rev. D 1, 3217–3219 (1970)ADSCrossRefGoogle Scholar
  11. 11.
    Klauder, J.R., Sudarshan, E.C.G.: Fundamentals of Quantum Optics, Chapter 7. W. A. Benjamin, New York (1968)Google Scholar
  12. 12.
    Tombesi, P., Mecozzi, A.: Generation of macroscopically distinguishable quantum states and detection by the squeezed-vacuum technique. J. Opt. Soc. Am. B 4(10), 1700–1709 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    Yurke, B., Stoler, D.: Quantum behavior of a four-wave mixer operated in a nonlinear regime. Phys. Rev. A 35, 4846–4849 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    van Enk, S.J.: Entanglement capabilities in infinite dimensions: multidimensional entangled coherent states. Phys. Rev. Lett. 91, 017902 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    El Allati, A., El Baz, M., Hassouni, Y.: Quantum key distribution via tripartite coherent states. Quantum Inf. Process. 10, 589–602 (2011)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    El Allati, A., Metwally, N., Hassouni, Y.: Transfer information remotely via noise entangled coherent channels. Opt. Commun. 284, 519–526 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Metwally, N.: Abrupt decay of entanglement and quantum communication through noise channels. Quantum Inf. Process. 4(4), 429 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    El Allati, A., Hassouni, Y., Metwally, N.: Communication via an entangled coherent quantum network. Phys. Scr. 83, 065002 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Dodonov, V.V., Manko, V.I., Nikinov, D.E.: Even and odd coherent states for multimode parametric systems. Phys. Rev. A 51, 3328–3336 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    Ansari, N.A., Manko, V.I.: Photon statistics of multimode even and odd coherent light. Phys. Rev. A 50, 1942–1945 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    Mandel, L.: Sub-Poissonian photon statistics in resonance fluorescence. Opt. Lett. 4, 205 (1979)ADSCrossRefGoogle Scholar
  22. 22.
    Plenio, M.B., Vedral, V.: Teleportation, entanglement and thermodynamics in the quantum world. Contemp. Phys. 39, 431–446 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    Vedral, V.: Introduction to Quantum Information Science. Oxford University Press, Oxford (2006)MATHCrossRefGoogle Scholar
  24. 24.
    Jaeger, G.: Quantum Information. Springer, Berlin (2007)MATHGoogle Scholar
  25. 25.
    Alicki, R., et al.: Thermodynamics of quantum information systems—Hamiltonian description. Open Syst. Inf. Dyn. 11, 205–217 (2004)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Robles-Pérez, S., González-Díaz, P.F.: Quantum entanglement in the multiverse. arXiv:1111.4128v1 (2012)Google Scholar
  27. 27.
    Wang, X.: Quantum teleportation of entangled coherent states. Phys. Rev. A 64, 022302 (2001)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Tahira, R., Ikram, M., Nha, H., Zubairy, M.: Entanglement of Gaussian states using a beam splitter. Phys. Rev. A 79, 023816 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Holevo, A.S.: One-mode quantum Gaussian channels, problems of information transmission, v. 43, 1–11. Arxiv quant-ph/0607051 (2007)Google Scholar
  30. 30.
    Holevo, A.S., Werner, R.F.: Evaluating capacities of bosonic Gaussian channels. Phys. Rev. A 63, 032312 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    Solomon Ivan, J., Sabapathy, K.K., Simon, R.: Operator-sum representation for bosonic Gaussian channels. Phys. Rev. A 84, 042311 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Weedbrook, C., Pirandola, S., Patron, R.G., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888–1898 (1999)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. El Allati
    • 2
    • 1
  • S. Robles-Pérez
    • 3
    • 4
    • 5
  • Y. Hassouni
    • 1
  • P. F. González-Díaz
    • 3
    • 4
  1. 1.Laboratoire de Physique Théorique URAC-13, Faculté des SciencesUniversité Mohammed V-AgdalRabatMorocco
  2. 2.The Abdus Salam International Centre for Theoretical PhysicsMiramare-TriesteItaly
  3. 3.Colina de los Chopos, Centro de Física “Miguel Catalán”, Instituto de Física FundamentalConsejo Superior de Investigaciones CientíficasMadridSpain
  4. 4.Estación Ecológica de BiocosmologíaMedellínSpain
  5. 5.Física TeóricaUniversidad del País VascoBilbaoSpain

Personalised recommendations