Quantum Information Processing

, Volume 13, Issue 1, pp 131–139 | Cite as

Practical quantum all-or-nothing oblivious transfer protocol

  • Yan-Bing Li
  • Qiao-Yan Wen
  • Su-Juan Qin
  • Fen-Zhuo Guo
  • Ying Sun


In this paper, we propose a practical quantum all-or-nothing oblivious transfer protocol. Its security is based on technological limitations on non-demolition measurements and long-term quantum memory, and it has the capabilities of loss-tolerance and error-correction.


Quantum oblivious transfer Loss-tolerance Error-correction 



We are grateful to the anonymous reviewer for helpful comments. This work is supported by NSFC (Grant Nos. 61272057, 61202434, 61170270, 61100203, 61003286, 61121061, and 61103210), NCET (Grant No. NCET-10-0260), Beijing Natural Science Foundation (Grant Nos. 4112040, 4122054), the Fundamental Research Funds for the Central Universities (Grant No. 2012RC0612, 2011YB01), and Key Laboratory Funds of BESTI (Grant No.YQNJ0903).


  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. Bangalore, India, IEEE Press, New York (1984)Google Scholar
  2. 2.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)MathSciNetCrossRefADSMATHGoogle Scholar
  3. 3.
    Koashi, M.: Unconditional security of coherent-state quantum key distribution with a strong phase-reference pulse. Phys. Rev. Lett. 93(120501), 1–4 (2004)Google Scholar
  4. 4.
    Rosenberg, D., Harrington, J.W., Rice, P.R., Hiskett, P.A., Peterson, C.G., Hughes, R.J., Lita, A.E., Nam, S.W., Nordholt, J.E.: Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98(010503), 1–4 (2007)Google Scholar
  5. 5.
    Sun, Y., Wen, Q.Y., Gao, F., Zhu, F.C.: Robust variations of the Bennett–Brassard 1984 protocol against collective noise. Phys. Rev. A 80(032321), 1–7 (2009)Google Scholar
  6. 6.
    Allati, A.E., Baz, M.E., Hassouni, Y.: Quantum key distribution via tripartite coherent states. Quant. Inf. Proc. 10(5), 589–602 (2011)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)CrossRefADSGoogle Scholar
  8. 8.
    Hillery, M., Buz$\breve{{\rm e}}$k, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)Google Scholar
  9. 9.
    Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery–Buek–Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76(062324), 1–7 (2007)Google Scholar
  10. 10.
    Wang, T.Y., Wen, Q.Y., Gao, F., Lin, S., Zhu, F.C.: Cryptanalysis and improvement of multiparty quantum secret sharing schemes. Phys. Lett. A 65–68, 373 (2008)Google Scholar
  11. 11.
    Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum state sharing of an arbitrary four-qubit GHZ-type state by using a four-qubit cluster state. Quant. Inf. Proc. 10(5), 603–608 (2011)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Bostroem, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(187902), 1–4 (2002)Google Scholar
  13. 13.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(042317), 1–6 (2003)Google Scholar
  14. 14.
    Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with-type entangled states. Phys. Rev. A 78(064304), 1–4 (2008)Google Scholar
  15. 15.
    Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192–195 (2010)CrossRefADSGoogle Scholar
  16. 16.
    Yang, Y.G., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Revisiting the security of secure direct communication based on ping-pong protocol. Quant. Inf. Proc. 10(3), 317–323 (2011)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)Google Scholar
  18. 18.
    Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature (London) 390, 575–579 (1997)CrossRefADSGoogle Scholar
  19. 19.
    Chen, X.B., Wen, Q.Y., Zhu, F.C.: Quantum circuits for probabilistic entanglement teleportation via a partially entangled pair. Int. J. Quant. Inform. 5, 717–728 (2007)CrossRefMATHGoogle Scholar
  20. 20.
    Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel. Quant. Inf. Proc. 11(2), 615–628 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Jiang, M., Li, H., Zhang, Z.K., Zeng, J.: Faithful teleportation via multi-particle quantum states in a network with many agents. Quant. Inf. Proc. 11(1), 23–40 (2012)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Yao, A.C.: Protocols for secure computation. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science, pp. 160–164. IEEE Computer Society, Washington (1982)Google Scholar
  23. 23.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM, New York (1987)Google Scholar
  24. 24.
    Mayers, D.: Unconditional secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414–3417 (1997)CrossRefADSGoogle Scholar
  25. 25.
    Lo, H.K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78, 3410–3413 (1997)CrossRefADSGoogle Scholar
  26. 26.
    Anders, J., Browne, D.E.: Computational power of correlations. Phys. Rev. Lett. 102(050502), 1–4 (2009)MathSciNetGoogle Scholar
  27. 27.
    Li, Y.B., Wen, Q.Y., Qin, S.: Comment on secure multiparty computation with a dishonest majority via quantum means. Phys. Rev. A 84(016301), 1–3 (2011)Google Scholar
  28. 28.
    Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)CrossRefADSGoogle Scholar
  29. 29.
    Li, Y.B., Wen, Q.Y., Gao, F., Jia, H.Y., Sun, Y.: Information leak in Liu et al.’s quantum private comparison and a new protocol. Eur. Phys. J. D 66, 110–115 (2012)CrossRefADSGoogle Scholar
  30. 30.
    Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quant. Inf. Proc. 11(2), 373–384 (2012)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Li, Y.B., Wen, Q.Y., Qin, S.J.: Improved secure multiparty computation with a dishonest majority via quantum means. Int. J. Theor. Phys. 52(1), 199–205 (2013)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Li, Y.B., Qin, S.J., Yuan, Z., Huang, W., Sun, Y.: Quantum private comparison against decoherence noise Quant. Inf. Proc. (2012). doi:  10.1007/s11128-012-0517-1
  33. 33.
    Shimizu, K., Imoto, N.: Communication channels analogous to one out of two oblivious transfers based on quantum uncertainty. Phys. Rev. A 66(052316), 1–15 (2002)Google Scholar
  34. 34.
    Shimizu, K., Imoto, N.: Communication channels analogous to one out of two oblivious transfers based on quantum uncertainty. II. Closing EPR-type loopholes. Phys. Rev. A 67(034301), 1–4 (2003)Google Scholar
  35. 35.
    He, G.P., Wang, Z.D.: Oblivious transfer using quantum entanglement. Phys. Rev. A 73(012331), 1–9 (2006)Google Scholar
  36. 36.
    He, G.P., Wang, Z.D.: Nonequivalence of two flavors of oblivious transfer at the quantum level. Phys. Rev. A 73(044304), 1–4 (2006)Google Scholar
  37. 37.
    Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56, 1541–1162 (1997)CrossRefGoogle Scholar
  38. 38.
    Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.H.: Practical quantum oblivious transfer. In: Proceedings of the Advances in Cryptology-Crypto’90, pp. 351–366. Springer, Berlin (1991)Google Scholar
  39. 39.
    Danan, A., Vaidman, L.: Quantum practical quantum bit commitment protocol. Inf. Process. 11(3), 769–775 (2012)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Damgard, I., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded quantum-storage model. In: Proceedings of 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2005, pp. 449–458. IEEE (2005)Google Scholar
  41. 41.
    Zhang, Q., Yin, J., Chen, T.Y., Lu, S., Zhang, J., Li, X.Q., Yang, T., Wang, X.B., Pan, J.W.: Experimental fault-tolerant quantum cryptography in a decoherence-free subspace. Phys. Rev. A 73(020301), 1–4 (2006)Google Scholar
  42. 42.
    Nguyen, A.T., Frison, J., Huy, K.P., Massar, S.: Experimental quantum tossing of a single coin. New J. Phys. 10(083037), 1–13 (2008)MATHGoogle Scholar
  43. 43.
    Kosut, R.L., Lidar, DlA: Quantum error correction via convex optimization. Quant. Inf. Proc. 8(5), 443–459 (2009)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Korcyl, P., Wosiek, J., Stodolsky, L.: Studies in a random noise model of decoherence. Quant. Inf. Proc. 10(5), 671–695 (2011)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Zhang, J., Gangloff, D., Moussa, O., Laflamme, R.: Experimental quantum error correction with high fidelity. Phys. Rev. A 84(034303), 1–4 (2011)Google Scholar
  46. 46.
    In general use of error-correcting code, Alice encodes a $l$ bits word $W$ to a $m$ bits codeword $C$ with $[m, l]$ error-correcting code, then transmits $C$ to Bob through a noise transmission. Bob obtains $l$ bits $C^{\prime }$ which might have less than $t$ error bits. He first performs the check function $H(x^m)$ on $C^{\prime }$ to check whether the number of error bits exceeds $t$ or not. Then he can decode $l$ bits word $W^{\prime }$ with error-correcting function $D(x^m)$, and it should be that $W^{\prime }=W$. In this protocol, the codeword $C$ is random but not pre-decided by Alice. So the processes are not same to the general error-correctingGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yan-Bing Li
    • 1
    • 2
    • 3
  • Qiao-Yan Wen
    • 1
  • Su-Juan Qin
    • 1
  • Fen-Zhuo Guo
    • 1
  • Ying Sun
    • 3
  1. 1.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.State Key Laboratory of Information Security, Institute of SoftwareChinese Academy of SciencesBeijingChina
  3. 3.Beijing Electronic Science and Technology InstituteBeijingChina

Personalised recommendations