Advertisement

Quantum Information Processing

, Volume 12, Issue 6, pp 2269–2290 | Cite as

Image storage, retrieval, compression and segmentation in a quantum system

  • Hai-Sheng Li
  • Zhu Qingxin
  • Song Lan
  • Chen-Yi Shen
  • Rigui Zhou
  • Jia Mo
Article

Abstract

A set of quantum states for \(M\) colors and another set of quantum states for \(N\) coordinates are proposed in this paper to represent \(M\) colors and coordinates of the \(N\) pixels in an image respectively. We design an algorithm by which an image of \(N\) pixels and \(m\) different colors is stored in a quantum system just using \(2N+m\) qubits. An algorithm for quantum image compression is proposed. Simulation result on the Lena image shows that compression ratio of lossless is 2.058. Moreover, an image segmentation algorithm based on quantum search quantum search which can find all solutions in the expected times in \(O(t\sqrt{N} )\) is proposed, where \(N\) is the number of pixels and \(t\) is the number of targets to be segmented.

Keywords

Quantum image processing Image storage and retrieval   Image compression Image segmentation Quantum search algorithms  Quantum computation 

Notes

Acknowledgments

This work is supported by the Key Project of Chinese Ministry of Education under Grant No. 212094, Humanities and Social Sciences planning project of Ministry of Education under Grant no. 12YJAZH050, the Foundation of Talent of Jinggang of Jiangxi Province under Grant No. 20112BCB23014, Project of International Cooperation and Exchanges of Jiangxi Province under Grant No.20112BDH80007, Project of International Cooperation and Exchanges of Nanchang City and the item of science and technology awarded by Education Bureau of Jiangxi Province under Grant no. GJJ12311.

References

  1. 1.
    Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. Lond. A 400, 97–117 (1985)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proceeding of SPIE Conference Quantum Information and Computation, vol. 5105, pp. 137–147 (2003)Google Scholar
  4. 4.
    Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63–84 (2011)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412, 1406–1418 (2011)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Efficient color transformations on quantum images. J Adv Comput Intell Intell Inf 15(6), 698–706 (2011)Google Scholar
  8. 8.
    Beach, G., Lomont, C., Cohen, C.: Quantum image processing (quip). In: Proceedings of Applied Imagery Pattern Recognition Workshop, pp. 39–44 (2003)Google Scholar
  9. 9.
    Chao-Yang, P., Zheng-Wei, Z., Guang-Can, G.: A hybrid quantum encoding algorithm of vector quantization for image compression. Chin. Phys. 15(12), 3039–3043 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  11. 11.
    Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, pp. 124–134 (1994)Google Scholar
  12. 12.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing (1996)Google Scholar
  13. 13.
    Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)Google Scholar
  14. 14.
    Zhou, R.G., Wang, H., Wu, Q., Yang, S.: Quantum associative neural network with nonlinear search algorithm. Int. J. Theor. Phys. 51(3), 705–723 (2012)Google Scholar
  15. 15.
    Zhou, R.G., Nan, J., Qiulin, D.: Multi-pattern recognition based on Grover’s algorithmChinese. J. Electron. 16(4), 679–682 (2007)Google Scholar
  16. 16.
    Boyer, M., Brassard, G., Hyer, P., Tapp, A.: Tight bounds on quantum searching. Fortsch. Phys. 46, 493–500 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2/E. Publishing House of Electronics Industry, Beijing (2007)Google Scholar
  18. 18.
    Felzenszwalb, P.F.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)CrossRefGoogle Scholar
  19. 19.
    Mosca, M.: Quantum searching, counting and amplitude amplification by eigenvector analysis. In: Proceedings of Randomized Algorithms, Workshop of Mathematical Foundations of Computer Science, pp. 90–100 (1998)Google Scholar
  20. 20.
    Brassard, G., H\(\phi \)yer, P., Tapp, A.: Quantum Counting. Quant-ph/9805082V1, 1–12Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Hai-Sheng Li
    • 1
    • 2
  • Zhu Qingxin
    • 1
  • Song Lan
    • 2
    • 3
  • Chen-Yi Shen
    • 2
  • Rigui Zhou
    • 2
  • Jia Mo
    • 2
  1. 1.School of Computer Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.College of Information EngineeringEast China JiaoTong UniversityNanchangPeople’s Republic of China
  3. 3.Computer schoolWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations