Quantum Information Processing

, Volume 12, Issue 6, pp 2071–2085 | Cite as

Attack and improvements of fair quantum blind signature schemes



Blind signature schemes allow users to obtain the signature of a message while the signer learns neither the message nor the resulting signature. Therefore, blind signatures have been used to realize cryptographic protocols providing the anonymity of some participants, such as: secure electronic payment systems and electronic voting systems. A fair blind signature is a form of blind signature which the anonymity could be removed with the help of a trusted entity, when this is required for legal reasons. Recently, a fair quantum blind signature scheme was proposed and thought to be safe. In this paper, we first point out that there exists a new attack on fair quantum blind signature schemes. The attack shows that, if any sender has intercepted any valid signature, he (she) can counterfeit a valid signature for any message and can not be traced by the counterfeited blind signature. Then, we construct a fair quantum blind signature scheme by improved the existed one. The proposed fair quantum blind signature scheme can resist the preceding attack. Furthermore, we demonstrate the security of the proposed fair quantum blind signature scheme and compare it with the other one.


Quantum cryptography Quantum signature Fair blind signature Attack 



We are grateful to the anonymous reviewers for their invaluable comments that helped to improve the quality of this paper. This work is supported in part by the National Natural Science Foundation (Nos. 61272058, 61073054, 60873055), the Natural Science Foundation of Guangdong Province of China (Nos. 10251027501000004, S2012040007324, S2012010008833), the Fundamental Research Funds for the Central Universities (No. 10lgzd12), the Specialized Research Fund for the Doctoral Program of Higher School of Ministry of Education (No. 20100171110042), the Science and Technology Project of Jiangmen City of China (No. [2011]131), and the project of SQIG at IT, funded by FCT and EU FEDER projects Quantlog POCI/MAT/55796/2004 and QSec PTDC/EIA/67661/2006, IT Project QuantTel, NoE Euro-NF, and the SQIG LAP initiative.


  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984)Google Scholar
  2. 2.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Mayers, D.: Unconditional security in quantum cryptography. J. ACM (JACM) 48(3), 351–406 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Inamori, H., Lütkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D 41(3), 599–627 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  10. 10.
    Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C. New York (1996)Google Scholar
  11. 11.
    Gottesman, D., Chuang, I.: Quantum Digital Signatures. ArXiv:quant-ph/0105032 (2001)Google Scholar
  12. 12.
    Barnum, H., Crépeau, C., Gottesman, D., Smith, A., Tapp, A.: Authentication of quantum messages. In: The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002, pp. 449–458 (2002)Google Scholar
  13. 13.
    Curty, M., Santos, D.J., Pérez, E., García-Fernández, P.: Qubit authentication. Phys. Rev. A 66(2), 022301 (2002)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79(5), 054307 (2009)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Zou, X., Qiu, D.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82(4), 042325 (2010)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Lee, H., Hong, C., Kim, H., Lim, J., Yang, H.J.: Arbitrated quantum signature scheme with message recovery. Phys. Lett. A 321(5), 295–300 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    Lü, X., Feng, D.G.: An arbitrated quantum message signature scheme. In: Computational and Information Science 2004 (CIS 2004), LNCS, vol. 3314, pp. 1054–1060. Springer (2004)Google Scholar
  19. 19.
    Wang, J., Zhang, Q., Tang, C.: Quantum signature scheme with message recovery. In: IEEE 8th International Conference on Advanced Communication Technology, 2006 (ICACT 2006), vol. 2, pp. 1375–1378. (2006)Google Scholar
  20. 20.
    Wen, X., Liu, Y., Sun, Y.: Quantum multi-signature protocol based on teleportation. Z. Naturforsch. A 62(3/4), 147 (2007)MATHGoogle Scholar
  21. 21.
    Zeng, G., Lee, M., Guo, Y., He, G.: Continuous variable quantum signature algorithm. Int. J. Quant. Inf. 5(4), 553–573 (2007)MATHCrossRefGoogle Scholar
  22. 22.
    Yang, Y.G.: Multi-proxy quantum group signature scheme with threshold shared verification. Chin. Phys. B 17, 415 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Lu, X., Feng, D.: Quantum digital signature based on quantum one-way functions. In: The 7th International Conference on Advanced Communication Technology, 2005 (ICACT 2005), IEEE, vol. 1, pp. 514–517. (2004)Google Scholar
  24. 24.
    Cao, Z., Markowitch, O.: Security analysis of one quantum digital signature scheme. In: The Sixth International Conference on Information Technology: New Generations, 2009 (ITNG’09), IEEE, pp. 1574–1576. (2009)Google Scholar
  25. 25.
    Wen, X., Niu, X., Ji, L., Tian, Y.: A weak blind signature scheme based on quantum cryptography. Opt. Commun. 282(4), 666–669 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Wang, T.Y., Wen, Q.Y.: Fair quantum blind signatures. Chin. Phy. B 19(6), 060307 (2010)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67(4), 042317 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Lo, H., Ko, T.: Some attacks on quantum-based cryptographic protocols. Quant. Inf. Comput. 5(1), 41–48 (2005)MathSciNetGoogle Scholar
  30. 30.
    Chaum, D.: Blind signatures for untraceable payments. In: Advances in Cryptology: Proceedings of Crypto. vol. 82, pp. 199–203 (1982)Google Scholar
  31. 31.
    Stadler, M., Piveteau, J., Camenisch, J.: Fair blind signatures. In: Advances in Cryptology-Eurocrypt’95, pp. 209–219. Springer (1995)Google Scholar
  32. 32.
    Strang, G.: Linear Algebra and Its Applications, 4th edn. Brooks/Cole, Florence (2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.School of Mathematics and Computational ScienceWuyi UniversityJiangmenChina
  2. 2.Department of Computer ScienceSun Yat-sen UniversityGuangzhouChina
  3. 3.SQIG—Instituto de Telecomunicações, Departamento de MatemáticaInstituto Superior Técnico, TULisbonLisbonPortugal

Personalised recommendations