Skip to main content
Log in

Controlled dense coding using a five-atom cluster state in cavity QED

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a simple scheme for implementing controlled dense coding by using a five-atom cluster state. In cavity QED systems, we have proposed to generate a five-atom cluster state and demonstrated that the four-atom entangled states can be exactly distinguished. Thus our approach can be realized with present cavity QED techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett C.H., Wiesner S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Cao Z.L., Yang M., Guo G.C.: The scheme for realizing probabilistic teleportation of atomic states and purifying the quantum channel on cavity QED. Phys. Lett. A 308(5), 349–354 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Rao D.D.B., Ghosh S., Panigrahi P.K.: Generation of entangled channels for perfect teleportation using multielectron quantum dots. Phys. Rev. A 78(4), 042328 (2008)

    Article  ADS  Google Scholar 

  4. Prasath E.S., Muralidharan S., Mitra C., Panigrahi P.K.: Multipartite entangled magnon states as quantum communication channels. Quantum Inf. Process 11(2), 397–410 (2012)

    Article  MathSciNet  Google Scholar 

  5. Samal J.R., Gupta M., Panigrahi P.K., Kumar A.: Non-destructive discrimination of Bell states by NMR using a single ancilla qubit. J. Phys. B At. Mol. Opt. Phys. 43, 095508 (2010)

    Article  ADS  Google Scholar 

  6. Ye L., Guo G.C.: Scheme for implementing quantum dense coding in cavity QED. Phys. Rev. A 71(3), 034304 (2005)

    Article  ADS  Google Scholar 

  7. Nie Y.Y., Li Y.H., Liu J.C., Sang M.H.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process 10(3), 297–305 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Shi R.H., Huang L.S., Yang W., Zhong H.: Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state. Quantum Inf. Process 10(1), 53–61 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hou K., Liu G.H., Zhang X.Y., Sheng S.Q.: An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multiqubit cluster states. Quantum Inf. Process 10(4), 463–473 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Shi R.H., Huang L.S., Yang W., Zhong H.: Effcient symmetric five-party quantum state sharing of an arbitrary m-qubit state. Int. J. Theor. Phys. 50(11), 3329–3336 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Saha D., Panigrahi P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ–Bell channel. Quantum Inf. Process 11(2), 615–628 (2012)

    Article  MathSciNet  Google Scholar 

  12. Nie Y.Y., Li Y.H., Liu J.C., Sang M.H.: Quantum information splitting of an arbitrary three-qubit state by using a genuinely entangled five-qubit state and a Bell-state. Quantum Inf. Process 11(2), 563–569 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Li Y.H., Liu J.C., Nie Y.Y.: Quantum teleportation and quantum information splitting by using a genuinely entangled six-qubit state. Int. J. Theor. Phys. 49(10), 2592–2599 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Peng Z.H., Jia C.X.: Scheme for implementing perfect quantum dense coding with three-atom W-class state in cavity QED. Opt. Commun. 281(15), 1745–1750 (2008)

    Article  ADS  Google Scholar 

  15. Ye L., Yu L.B.: Scheme for implementing quantum dense coding using tripartite entanglement in cavity QED. Phys. Lett. A 346(5), 330–336 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  16. Qiu L.: Quantum information processing through a genuine five-qubit entangled state in cavity QED. Quantum Inf. Process 9(5), 643–662 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Briegel H.J., Raussendorf R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910–913 (2001)

    Article  ADS  Google Scholar 

  18. Dong P., Xue Z.Y., Yang M., Cao Z.L.: Generation of cluster states. Phys. Rev. A 73(3), 033818 (2006)

    Article  ADS  Google Scholar 

  19. Hein M., Dür W., Briegel H.J.: Entanglement properties of multipartite entangled states under the influence of decoherence. Phys. Rev. A 71(3), 032350 (2005)

    Article  ADS  Google Scholar 

  20. Schlingemann D., Werner R.F.: Quantum error-correcting codes associated with graphs. Phys. Rev. A 65(1), 012308 (2001)

    Article  ADS  Google Scholar 

  21. Raussendorf R., Briegel H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188–5191 (2001)

    Article  ADS  Google Scholar 

  22. Zheng S.B.: Generation of cluster states in ion-trap systems. Phys. Rev. A 73(6), 065802 (2006)

    Article  ADS  Google Scholar 

  23. Zou X.B., Mathis W.: Generating a four-photon polarization-entangled cluster state. Phys. Rev. A 71(3), 032308 (2005)

    Article  ADS  Google Scholar 

  24. Zou X.B., Mathis W.: Schemes for generating the cluster states in microwave cavity QED. Phys. Rev. A 72(1), 013809 (2005)

    Article  ADS  Google Scholar 

  25. Zou X.B., Pahlke K., Mathis W.: Quantum entanglement of four distant atoms trapped in different optical cavities. Phys. Rev. A 69(5), 052314 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  26. Muralidharan S., Panigrahi P.K.: Quantuminformation splitting usingmultipartite cluster states. Phys. Rev. A 78(6), 062333 (2008)

    Article  ADS  Google Scholar 

  27. Luo C.L., Huang G.Q.: Controlled dense coding with five-qubit cluster state. Int. J. Theor. Phys. 49(6), 1244–1250 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zheng S.B.: Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion. Phys. Rev. A 68(3), 035801 (2003)

    Article  ADS  Google Scholar 

  29. Zheng S.B.: Quantum-information processing and multiatom-entanglement engineering with a thermal cavity. Phys. Rev. A 66(6), 0603031 (2002)

    Article  Google Scholar 

  30. Ye L., Liu Q.: Implement a measurement of GHZ entanglement for a multipartite system via cavity QED. Opt. Commun. 281(13), 3592–3595 (2008)

    Article  ADS  Google Scholar 

  31. Osnaghi S., Bertet P., Auffeves A., Maioli P., Brune M., Raimond J.M., Haroche S.: Coherent control of an atomic collision in a cavity. Phys. Rev. Lett. 87(3), 0379021 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-you Nie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, Yy., Li, Yh., Wang, Xp. et al. Controlled dense coding using a five-atom cluster state in cavity QED. Quantum Inf Process 12, 1851–1857 (2013). https://doi.org/10.1007/s11128-012-0499-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0499-z

Keywords

Navigation