Quantum Information Processing

, Volume 12, Issue 5, pp 1915–1945 | Cite as

Quantum interference of photons in simple networks

  • M. Suda
  • C. Pacher
  • M. Peev
  • M. Dušek
  • F. Hipp


A theoretical investigation of quantum interference of photonic multistates in simple devices like beam splitters, Mach–Zehnder interferometers and double-loop devices are presented. Variable transmission and reflection coefficients as well as variable phase shifts are included in order to calculate quantum states and mean photon numbers at the outputs. Various input states like Fock states and coherent states and a combination of both are considered as well as squeezed states. Two methods are applied: The direct matrix method and the method of unitary representation. Remarkable results appear in a double-loop interferometer where for special phase shifts equal mean photon numbers in the three output ports are obtained provided certain input states are given. A computerized simulation of general networks using various input Fock states is presented. Multistate devices will be used in future linear quantum computation and quantum information processing schemes.


Fock state Coherent state Mach–Zehnder Entanglement Quantum interference Double-loop interferometer Unitary operation Squeezed states Twin beam state 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  2. 2.
    Knill E., Laflamme R., Milburn G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Ralph T.C., White A.G., Munro W.J., Milburn G.J.: Simple scheme for efficient linear optics quantum gates. Phys. Rev. A 65, 012314–1 (2001)Google Scholar
  4. 4.
    O’Brien, J.L.: Optical quantum computing. Science 318, 1567–1570 arXiv:0803.1554 (2007)Google Scholar
  5. 5.
    Politi, A., Cryan, M.J., Rarity, J.G., Yu, S., O’Brien, J.L.: Silica-on silicon waveguide quantum circuits. Science 320, 646 (2008) arXiv:0802.0136Google Scholar
  6. 6.
    Kok P., Munro W.J., Nemoto K., Ralph T.C., Dowling J.P., Milburn G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Ralph, T.C., Pryde, G.J.: Quantum optical computation. pp. 1–70 (2011) arXiv:1103.6071Google Scholar
  8. 8.
    Skaar J., Escartín J.C.G., Landro H.: Quantum mechanical description of linear optics. Am. J. Phys. 72, 1385 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Gerry C.C., Knight P.L.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)Google Scholar
  10. 10.
    Schleich W.P.: Quantum Optics in Phase Space. Wiley, Berlin (2001)zbMATHCrossRefGoogle Scholar
  11. 11.
    Loudon R.: The Quantum Theory of Light. Oxford University Press, Oxford (2000)zbMATHGoogle Scholar
  12. 12.
    Reck M., Zeilinger A.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    Reck, M., Zeilinger, A.: Quantum phase tracing of correlated photons in optical multiports. In: DeMartini, F., Denardo, G., Zeilinger, A. (eds) Proceedings of the Adriatico Workshop on Quantum Interferometry (pp. 171–178). World Scientific, Singapore (1993)Google Scholar
  14. 14.
    Weihs G., Reck M., Weinfurter H., Zeilinger A.: Two-photon interference in optical fiber multiports. Phys. Rev. A 54, 893 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    Hong C.K., Ou Z.Y., Mandel L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987)ADSCrossRefGoogle Scholar
  16. 16.
    Kim M.S., Son W., Bužek V., Knight P.L.: Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement. Phys. Rev. A 65, 032323 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    Stokes G.G.: On attractions and on Clairaut’s theorem. Camb. Dublin Math. J. 4, 1 (1849)Google Scholar
  18. 18.
    Holbrow C.H., Galvez E., Parks M.E.: Photon quantum mechanics and beam splitters. Am. J. Phys. 70, 260 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    Jauch J.M., Rohrlich F.: The Theory of Photons and Electrons. Springer, Berlin (1976)CrossRefGoogle Scholar
  20. 20.
    Biedenharn L.C., Louck J.D.: Angular Momentum in Quantum Physics. Addison-Wesley, USA (1981)zbMATHGoogle Scholar
  21. 21.
    Leonhardt U.: Measuring the Quantum State of Light. Cambridge University Press, Cambridge (1997)Google Scholar
  22. 22.
    Mandel L., Wolf E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)Google Scholar
  23. 23.
    Windhager, A., Suda, M., Pacher, C., Peev, M.,Poppe, A.: Quantum interference between a single- photon Fock state and a coherent state. Opt. Commun. 284, 1907–1912 (2011) arXiv:1009.1844Google Scholar
  24. 24.
    Hendrych M., Dušek M., Haderka O.: The effect of beam-splitter imperfections and losses on fringe visibility in a Mach–Zehnder interferometer. Acta Physica Slovaka 46, 393 (1996)Google Scholar
  25. 25.
    Paris, M.G.A.: Entanglement and visibility at the output of a Mach-Zehnder interferometer. Phys. Rev. A 59, 1615–1621 (1999) quant-ph/9811078Google Scholar
  26. 26.
    Paris, M.G.A.: Optical qubit by conditional interferometry. Phys. Rev. A 62, 033813 1–8 (2000) quant-ph/9909075Google Scholar
  27. 27.
    Soubusta J., Bartůšková L., Černoch A., Fiurášek J., Dušek M.: Several experimental realizations of symmetric phase-covariant quantum cloners of single-photon qubits. Phys. Rev. A 76, 042318–1 (2007)Google Scholar
  28. 28.
    Hradil Z., Dušek M.: Analogy between optimal spin estimation and interferometry. Opt. Commun. 182, 361 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    Walls D.F.: Squeezed states of light. Nature 306, 141 (1983)ADSCrossRefGoogle Scholar
  30. 30.
    Paris M.G.A.: Joint generation of identical squeezed states. Phys. Lett. A 225, 28 (1997)ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    Hillery M.: An introduction to the quantum theory of nonlinear optics. Acta Phys. Slov. 59, 1 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    Andreoni A., Bondani M., D’Ariano G.M., Paris M.G.A.: Dichromatic squeezing generation. Eur. Phys. J. D 13, 415 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    Paris M.G.A., Chizhov A.V., Steuernagel O.: Phase space distributions from three-port couplers. Opt. Commun. 134, 117 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    Duer W., Vidal G., Cirac J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)ADSCrossRefMathSciNetGoogle Scholar
  35. 35.
    Simon, D.S., Sergienko, A.V., Bahder, T.B.: Dispersion and fidelity in quantum interferometry. Phys. Rev. A 78, 053829 1–12 (2008) arXiv:0810.4501Google Scholar
  36. 36.
    Bartůšková L., Černoch A., Filip R., Fiuráśek J., Soubusta J., Dušek M.: Optical implementation of the encoding of two qubits to a single qutrit. Phys. Rev. A 74, 022325 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    Miková M., Fikerová H., Straka I., Mičuda M., Fiurášek J., Ježek M., Dušek M.: Increasing efficiency of a linear-optical quantum gate using electronic feed-forward. Phys. Rev. A 85, 012305 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    Hübel H., Hamel D.R., Fedrizzi A., Ramelow S., Resch K.J., Jennewein T.: Direct generation of photon triplets using cascaded photon-pair sources. Nature 466, 601 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    Weihs G., Reck M., Weinfurter H., Zeilinger A.: All-fiber three-path Mach-Zehnder interferometer. Opt. Lett. 21, 302 (1996)ADSCrossRefGoogle Scholar
  40. 40.
    Bartůšková L., Černoch A., Soubusta J., Dušek M.: Programmable discriminator of coherent states: experimantal realization. Phys. Rev. A 77, 034306–1 (2008)Google Scholar
  41. 41.
    Reinsch, M.W.: A simple expression for the terms in the Baker–Campbell–Hausdorff series. pp. 1–12 (1999) arXiv:math-ph/9905012Google Scholar
  42. 42.
    Dakna M., Knöll L., Welsch D.-G.: Photon-added state preparation via conditional measurement on a beam splitter. Opt. Commun. 145, 309 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    Zavatta A., Viciani S., Bellini M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science 306, 660 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    Zavatta A., Parigi V., King M.S., Bellini M.: Subtracting photons from arbitrary light fields: experimental test of coherent state invariance by single-photon annihilation. New J. Phys. 10, 123006 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    Lee S.-Y., Nha H.: Quantum state engineering by a coherent superposition of photon subtraction and addition. Phys. Rev. A 82, 053812 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    Gerrits T., Glancy S., Clement T.S., Calkins B., Lita A.E., Miller A.J., Migdal A.L., Nam S.W., Mirin R.P., Knill E.: Generation of optical coherent state superpositions by number-resolved photon subtraction from squeezed vacuum. Phys. Rev. A 82, 031802 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    Xiang G.Y., Ralph T.C., Lund A.P., Walk N., Pryde G.J.: Noiseless linear amplification and distillation of entanglement. Nat. Photonics 4, 316 (2010)CrossRefGoogle Scholar
  48. 48.
    Zavatta A., Fiurášek J., Bellini M.: A high-fidelity noisless amplifier for quantum light states. Nat. Photonics 5, 52 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • M. Suda
    • 1
  • C. Pacher
    • 1
  • M. Peev
    • 1
  • M. Dušek
    • 2
  • F. Hipp
    • 1
  1. 1.Safety and Security Department, Optical Quantum TechnologiesAIT Austrian Institute of Technology GmbHViennaAustria
  2. 2.Department of Optics, Faculty of SciencePalacky UniversityOlomoucCzech Republic

Personalised recommendations