Quantum Information Processing

, Volume 12, Issue 1, pp 625–630 | Cite as

Is quantum key distribution suitable for steganography?

  • Fei Gao
  • Bin Liu
  • Wei-Wei Zhang
  • Qiao-Yan Wen
  • Hui Chen


Recently a quantum steganographic communication protocol based on quantum key distribution (QKD) was proposed, where it is believed that QKD is a kind of suitable cover of a steganographic communication because QKD itself is not deterministic communication. Here we find that, as a special cryptographic application, the procedure of QKD can be used for deterministic secure communication, and consequently it is not suitable for steganography. Due to similar reasons, other quantum cryptographic schemes, including quantum secret sharing and quantum secure direct communication, are not suitable for steganography either.


Quantum steganography Quantum key distribution Quantum cryptography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Herodotus: The Histories. Penguin Books, London (1996)Google Scholar
  2. 2.
    Simmons, G.J.:Advances in Cryptology: Proceedings of Crypto 83. Plenum Press, New York, pp. 51–67 (1984)Google Scholar
  3. 3.
    Martin K.: Secure communication without encryption?. IEEE Secur. Priv. 5(2), 68–71 (2007)CrossRefGoogle Scholar
  4. 4.
    Martin K.: Steganographic communication with quantum information. LNCS 4567, 32–49 (2007)ADSGoogle Scholar
  5. 5.
    Liao X. et al.: Multi-party covert communication with steganography and quantum secret sharing. J. Syst. Softw. 83, 1801–1804 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Qu Z.-G. et al.: Novel quantum steganography with large payload. Opt. Commun. 283, 4782–4786 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Qu Z.-G. et al.: Quantum steganography with large payload based on entanglement swapping of χ-type entangled states. Opt. Commun. 284, 2075–2082 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Long G.L., Liu X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Boström K., Felbinger T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Deng F.-G., Long G.L., Liu X.-S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A. 68, 042317 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proc. IEEE Int. Conf. Comput., Syst. Signal. Bangalore, India, pp. 175–179 (1984)Google Scholar
  12. 12.
    Hwang W.Y., Ahn D., Hwang S.W.: Eavesdropper’s optimal information in variations of Bennett-Brassard 1984 quantum key distribution in the coherent attacks. Phys. Lett. A 279, 133 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Hwang W.Y., Wang X.B., Matsumoto K., Kim J., Lee H.W.: Shor-Preskill-type security proof for quantum key distribution without public announcement of bases. Phys. Rev. A 67, 012302 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Wen K., Long G.L.: Modified Bennett-Brassard 1984 quantum key distribution protocol with two-way classical communications. Phys. Rev. A 72, 022336 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Schneier B.: Applied Cryptography, 2nd edn: Protocols, Algorthms, and Source Code in C. Wiley Computer Publishing, Wiley, New York (1996)Google Scholar
  16. 16.
    Shaw B.A., Brun T.A.: Quantum steganography with noisy quantum channels. Phys. Rev. A 83, 022310 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Iliyasu A.M. et al.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186, 126–149 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Fei Gao
    • 1
    • 2
  • Bin Liu
    • 1
  • Wei-Wei Zhang
    • 1
  • Qiao-Yan Wen
    • 1
  • Hui Chen
    • 3
  1. 1.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.State Key Laboratory of Integrated Service NetworksXidian UniversityXi’anChina
  3. 3.Science and Technology on Communication Security LaboratoryChengduChina

Personalised recommendations