Quantum Information Processing

, Volume 12, Issue 1, pp 365–380 | Cite as

Multi-party quantum secret sharing with the single-particle quantum state to encode the information

  • Xiu-Bo Chen
  • Xin-Xin Niu
  • Xin-Jie Zhou
  • Yi-Xian Yang


We present a three-party quantum secret sharing (QSS) scheme via the entangled Greenberger–Horne–Zeilinger state. In this scheme, the sender Alice encodes her arbitrary secret information by means of preparing a single-particle quantum state. The agent Bob obtains his shared information according to his hobby, while Charlie can easily calculate his shared information. The proposed scheme is secure. It is shown that even a dishonest agent, who may avoid the security checking, cannot obtain any useful information. Moreover, we further investigate the multi-party QSS scheme which allows most agents to predetermine their information.


Quantum secret sharing GHZ state Single-particle quantum state Security 

Mathematics Subject Classification (2010)

81P94 94A62 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984)Google Scholar
  2. 2.
    Chen X.B., Wang T.Y., Du J.Z., Wen Q.Y., Zhu F.C.: Controlled quantum secure direct communication with quantum encryption. Int. J. Quant. Inform. 6, 543–551 (2008)MATHCrossRefGoogle Scholar
  3. 3.
    Chen X.B., Wen Q.Y., Guo F.Z., Sun Y., Xu G., Zhu F.C.: Controlled quantum secure direct communication with w state. Int. J. Quant. Inform. 6, 899–906 (2008)MATHCrossRefGoogle Scholar
  4. 4.
    Chong S.K., Hwang T.: The enhancement of three-party simultaneous quantum secure direct communication scheme with epr pairs. Opt. Commun. 284, 515–518 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Chen X.B., Wen Q.Y., Zhu F.C.: Probabilistic teleportation of a non-symmetric three-particle state. Chin. Phys. 15, 2240–2245 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Chen X.B., Zhang N., Lin S., Wen Q.Y., Zhu F.C.: Quantum circuits for controlled teleportation of two-particle entanglement via a w state. Opt. Commun. 281, 2331–2335 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Chen X.B., Wen Q.Y., Xu G., Yang Y.X., Zhu F.C.: Comment on “General relation between the transformation operator and an invariant under stochastic local operations and classical communication in quantum teleportation”. Phys. Rev. A 79, 036301 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Chen, X.B., Ma, S.Y., Su, Y., Zhang, R., Yang, Y.X.: Controlled remote state preparation of an arbitrary two and three qubit states via the brown state. Quantum Inf. Process (Online). doi: 10.1007/s11128-11011-10326-y (2012)
  10. 10.
    Hillery M., Buzek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Cleve R., Gottesman D., Lo H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Karimipour V., Bahraminasab A., Bagherinezhad S.: Entanglement swapping of generalized cat states and secret sharing. Phys. Rev. A 65, 042320 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Zhang Z.J., Man Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Markham D., Sanders B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309 (2008)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Li Q., Long D.Y., Chan W.H., Qiu D.W.: Sharing a quantum secret without a trusted party. Quantum Inf. Process. 10, 97–106 (2011)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Gaertner S., Kurtsiefer C., Bourennane M., Weinfurter H.: Experimental demonstration of four-party quantum secret sharing. Phys. Rev. Lett. 98, 020503 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Bogdanski J., Rafiei N., Bourennane M.: Experimental quantum secret sharing using telecommunication fiber. Phys. Rev. A 78, 062307 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Shi R.H., Huang L.S., Yang W., Zhong H.: Multi-party quantum state sharing of an arbitrary two-qubit state with bell states. Quantum Inf. Process. 10, 231–239 (2011)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Zhang Z.J., Li Y., Man Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Qin S.J., Gao F., Wen Q.Y., Zhu F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101–103 (2006)ADSMATHCrossRefGoogle Scholar
  21. 21.
    Sun Y., Wen Q.Y., Gao F., Chen X.B., Zhu F.C.: Multiparty quantum secret sharing based on bell measurement. Opt. Commun. 282, 3647–3651 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Shi R., Huang L.S., Yang W., Zhong H.: Multiparty quantum secret sharing with bell states and bell measurements. Opt. Commun. 283, 2476–2480 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Lin S., Wen Q.Y., Qin S.J., Zhu F.C.: Multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun. 282, 4455–4459 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Gao G.: Cryptanalysis of multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun. 283, 2997–3000 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Zhang Z.: Robust multiparty quantum secret key sharing over two collective-noise channels. Phys. A: Stat. Mech. Appl. 361, 233–238 (2006)CrossRefGoogle Scholar
  26. 26.
    Chen X.B., Xu G., Niu X.X., Wen Q.Y., Yang Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Sun Y., Wen Q.y., Zhu F.C.: Improving the multiparty quantum secret sharing over two collective-noise channels against insider attack. Opt. Commun. 283, 181–183 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Gan G.: Multiparty quantum secret sharing using two-photon three-dimensional bell states. Commun. Theor. Phys. 52, 421–424 (2009)ADSMATHCrossRefGoogle Scholar
  29. 29.
    Deutsch D., Ekert A., Jozsa R., Macchiavello C., Popescu S., Sanpera A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818–2821 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    Shor P.W., Preskill J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    Wang T.Y., Wen Q.Y., Chen X.B., Guo F.Z., Zhu F.C.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Opt. Commun. 281, 6130–6134 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Shannon C.E.: Communication theory of secret systems. Bell Syst. Tech. J. 28, 656–715 (1949)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Xiu-Bo Chen
    • 1
    • 2
  • Xin-Xin Niu
    • 1
    • 2
  • Xin-Jie Zhou
    • 1
    • 2
  • Yi-Xian Yang
    • 1
    • 3
  1. 1.Information Security CenterBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.State Key Laboratory of Information Security, (Graduate University of Chinese Academy of Sciences)BeijingChina
  3. 3.Research Center on Fictitious Economy and Data ScienceChinese Academy of SciencesBeijingChina

Personalised recommendations