Skip to main content
Log in

Mixing-time and large-decoherence in continuous-time quantum walks on one-dimension regular networks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we study mixing and large decoherence in continuous-time quantum walks on one dimensional regular networks, which are constructed by connecting each node to its 2l nearest neighbors (l on either side). In our investigation, the nodes of network are represented by a set of identical tunnel-coupled quantum dots in which decoherence is induced by continuous monitoring of each quantum dot with nearby point contact detector. To formulate the decoherent CTQWs, we use Gurvitz model and then calculate probability distribution and the bounds of instantaneous and average mixing times. We show that the mixing times are linearly proportional to the decoherence rate. Moreover, adding links to cycle network, in appearance of large decoherence, decreases the mixing times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feynman R.P., Leighton R.B., Sands M.: Feynman Lectures on Physics. Addison Wesley, Boston (1964)

    Google Scholar 

  2. Farhi E., Gutmann S.: Quantum computation and decision trees. Phys. Rev. A 58, 915–928 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  3. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing (STOC’01), pp. 37–49. ACM Press, New York (2001)

  4. Konno N.: One-dimensional discrete-time quantum walks on random environments. Quant. Inf. Process. 8(5), 387–399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Krovi H., Brun T.A.: Quantum walks on quotient graphs. Phys. Rev. A 75, 062332 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  6. Mülken O., Blumen A.: Continuous-time quantum walks in phase space. Phys. Rev. A 73, 012105 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  7. Chandrashekar, C.M.: Discrete time quantum walk model for single and entangled particles to retain entanglement in coin space. arXiv: quant-ph/0609113V4 (2006)

  8. Gottlieb A.D.: Convergence of continuous-time quantum walks on the line. Phys. Rev. E 72, 047102 (2005)

    Article  ADS  Google Scholar 

  9. Avraham D., Bollt E., Tamon C.: One-dimensional continuous-time quantum walks. Quant. Inf. Process. 3, 295 (2004)

    Article  MATH  Google Scholar 

  10. Salimi S.: Continuous-time quantum walks on star graphs. Ann. Phys. 324, 1185–1193 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Xu X.: Exact analytical results for quantum walks on star graph. J. Phys. A. Math. Theor. 42, 115205 (2009)

    Article  ADS  Google Scholar 

  12. Salimi S., Jafarizadeh M.: Continuous-time classical and quantum random walk on direct product of Cayley graphs. Commun. Theor. Phys. 51, 1003–1009 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Salimi S.: Continuous-time quantum walks on semi-regular spidernet graphs via quantum probability theory. Quant. Inf. Process. 9, 75–91 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  14. Salimi S.: Quantum central limit theorem for continuous-time quantum walks on odd graphs in quantum probability theory. Int. J. Theor. Phys. 47, 3298–3309 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jafarizadeh M.A., Salimi S.: Investigation of continuous-time quantum walk via spectral distribution associated with adjacency matrix. Ann. Phys. 322, 1005–1033 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Konno N.: Continuous-time quantum walks on trees in quantum probability theory. Infin. Dimens. Anal. Quant. Probab. Relat. Top. 9(2), 287–297 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu X.: Coherent exciton transport and trapping on long-range interacting cycles. Phys. Rev. E 79, 011117 (2009)

    Article  ADS  Google Scholar 

  18. Konno N.: Continuous-time quantum walks on ultrametric spaces. Int. J. Quant. Inf. 4(6), 1023–1035 (2006)

    Article  MATH  Google Scholar 

  19. Drezgić M., Hines A.P., Sarovar M., Sastry Sh.: Complete Characterization of mixing time for the continuous quantum walk on the hypercube with Markovian decoherence model. Quant. Inf. Comput 9, 854 (2009)

    Google Scholar 

  20. Kendon V.: Decoherence in quantum walks—a review. Math. Struct. Comput. Sci. 17(6), 1169–1220 (2006)

    MathSciNet  Google Scholar 

  21. Strauch F.W.: Reexamination of decoherence in quantum walks on the hypercube. Phys. Rev. A 79, 032319 (2009)

    Article  ADS  Google Scholar 

  22. Alagic G., Russell A.: Decoherence in quantum walks on the hypercube. Phys. Rev. A 72, 062304 (2005)

    Article  ADS  Google Scholar 

  23. Romanelli A., Siri R., Abal G., Auyuanet A., Donangelo R.: Decoherence in the quantum walk on the line. J. Phys. A 347, 137–152 (2005)

    MathSciNet  Google Scholar 

  24. Kendon V., Tregenna B.: Decoherence can be useful in quantum walks. Phy. Rev. A 67, 042315 (2003)

    Article  ADS  Google Scholar 

  25. Salimi S., Radgohar R.: Mixing and decoherence in continuous-time quantum walks on long-range interacting cycles. J. Phys. A Math. Theor. 42, 475302 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  26. Salimi S., Radgohar R.: The effect of large decoherence on mixing time in continuous-time quantum walks on long-range interacting cycles. J. Phys. B. At. Mol. Opt. Phys. 43, 025503 (2010)

    Article  ADS  Google Scholar 

  27. Fedichkin L., Solenov D., Tamon C.: Mixing and decoherence in continuous-time quantum walks on cycles. Quant. Inf. Comput. 6(3), 263–276 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Dür W.: Quantum walks in optical lattices. Phys. Rev. A 66, 052319 (2002)

    Article  ADS  Google Scholar 

  29. Côté R.: Quantum random walk with Rydberg atoms in an optical lattice. New J. Phys. 8, 156 (2006)

    Article  ADS  Google Scholar 

  30. Salimi S., Radgohar R.: The effect of decoherence on mixing time in continuous-time quantum walks on one-dimensional regular networks. Int. J. Quant. Inf. 8(5), 795–806 (2010)

    Article  MATH  Google Scholar 

  31. Xu X.: Continuous-time quantum walks on one-dimensional regular networks. Phys. Rev. E 77, 061127 (2008)

    Article  ADS  Google Scholar 

  32. Strogatz S.H., Stewart I.: Coupled oscillators and biological synchronization. Sci. Am. 269, 102 (1993)

    Article  Google Scholar 

  33. Wiesenfeld K.: New results on frequency-locking dynamics of disordered Josephson arrays. Phys. B 222, 315 (1996)

    Article  ADS  Google Scholar 

  34. Belykh I.V., Belykh V.N., Hasler M.: Connection graph stability method for synchronized coupled chaotic systems. Phys. D 195, 159–187 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Watts D.J., Strogatz S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)

    Article  ADS  Google Scholar 

  36. Childs A.M., Goldstone J.: Spatial search by quantum walk. Phys. Rev. A 70, 022314–022324 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  37. Mülken O., Blumen A.: Slow transport by continuous time quantum walks. Phys. Rev. E 71, 016101–016106 (2005)

    Article  ADS  Google Scholar 

  38. Volta A., Mülken O., Blumen A.: Quantum transport on two-dimensional regular graphs. J. Phys. A 39, 14997–15012 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Montroll E.W., Weiss G.H.: Random walks on lattices. II. J. Math. Phys 6, 167–181 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  40. Childs A.M., Farhi E., Gutmann S.: An example of the difference between quantum and classical random walks. Quant. Inf. Process. 1, 35 (2002)

    Article  MathSciNet  Google Scholar 

  41. Mülken O., Blumen A.: Spacetime structures of continuous-time quantum walks. Phys. Rev. E 71, 036128 (2005)

    Article  ADS  Google Scholar 

  42. Ziman J.M.: Principles of the Theory of Solids. Cambridge University Press, Cambridge (1972)

    Google Scholar 

  43. Solenov D., Fedichkin L.: Continuous-time quantum walks on a cycle graph. Phys. Rev. A 73, 012313 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  44. de la Torre A.C., Mártin H.O., Goyeneche D.: Quantum diffusion on a cyclic one-dimensional lattice. Phys. Rev. E 68, 031103 (2003)

    Article  ADS  Google Scholar 

  45. Pioro-Ladriere M., Abolfath R., Zawadzki P., Lapointe J., Studenikin S.A., Sachrajda A.S., Hawrylak P.: Charge sensing of an artificial H +2 molecule in lateral quantum dots. Phys. Rev. B 72, 125307 (2005)

    Article  ADS  Google Scholar 

  46. Hines A.P., Stamp P.C.E.: Quantum walks, quantum gates, and quantum computers. Phys. Rev. A 75, 062321 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  47. Gurvitz S.A.: Rate equations for quantum transport in multidot systems. Phys. Rev. B 57, 6602 (1998)

    Article  ADS  Google Scholar 

  48. Gurvitz S.A.: Measurements with a noninvasive detector and dephasing mechanism. Phys. Rev. B 56, 15215 (1997)

    Article  ADS  Google Scholar 

  49. Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  50. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of ACM Symposium on Theory of Computation (STOC 01), pp. 50–59 (2001)

  51. Arfken G.B., Weber H.J.: Mathematical Methods for Physicists, Chapter 5. Harcourt Academic Press, San Diego (1972)

    Google Scholar 

  52. Gurvitz S.A.: Quantum description of classical apparatus: zeno effect and decoherence. Quant. Inf. Process. 2, 15 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Salimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radgohar, R., Salimi, S. Mixing-time and large-decoherence in continuous-time quantum walks on one-dimension regular networks. Quantum Inf Process 12, 303–320 (2013). https://doi.org/10.1007/s11128-012-0377-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0377-8

Keywords

Navigation