Quantum Information Processing

, Volume 12, Issue 1, pp 279–294 | Cite as

The faithful remote preparation of general quantum states

  • Ming-Xing Luo
  • Yun Deng
  • Xiu-Bo Chen
  • Yi-Xian Yang


This paper is to establish a theoretical framework for faithful and deterministic remote state preparation, which is related to the classical Hurwitz theorem. And then based on the new theory various schemes with different characteristics are presented. Moreover, the permutation group and the partially quantum resources have also discussed for faithful schemes.


Remote state preparation Hurwitz theorem Permutation group Division algebra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennett C.H., Brassard G., Crpeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Bennett C.H., Bernstein H.J., Popescu S., Schumacher B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    Bouwmeester D., Pan J.W., Mattle K., Eibl M., Weinfurter H., Zeilinger A.: Experimental quantum teleportation. Nature 390, 575 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Boschi D., Branca S., De Martini F., Hardy L., Popescu S.: Quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Furusawa A., Søensen J.L., Braunstein S.L., Fuchs C.A., Kimble H.J., Polzik E.S.: Unconditional quantum teleportation. Science 282, 706–709 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    Kim Y.H., Kulik S.P., Shih Y.H.: Quantum teleportation of a polarization state with a complete Bell state measurement. Phys. Rev. Lett. 86, 1370 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Lo H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    Pati A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Bennett, C.H., Divincenzo, D.P., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote State Preparation, LANL e-print quant-ph/0006044Google Scholar
  10. 10.
    Leung D.W., Shor P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90, 127905 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Ye M.Y., Zhang Y.S., Guo G.C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69, 022310 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Bennett, C.H., Hayden, P., Leung, D.W., Shor, P.W., Winter, A.: Remote preparation of quantum states. arXiv:quant-ph/0307100v3Google Scholar
  13. 13.
    Yu C.S., Song H.S., Wang Y.H.: Remote preparation of qudit using maximally entangled states of qubits. Phys. Rev. A 73, 022340 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Nielsen M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Lo H.K., Popescu S.: Concentrating local entanglement by local actions-beyond mean values. Phys. Rev. A 63, 022301 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    Cameron P.J.: Permutation Groups, LMS Student Text 45. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  18. 18.
    Hurwitz, A.: Nachr. Ges. Wiss. Göttingen, 309–316 (1898)Google Scholar
  19. 19.
    Zhao Z., Pan J.W., Zhan M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    Nguyen B.A.: Joint remote preparation of a general two-qubit state. J. Phys. B At. Mol. Opt. Phys. 42, 125501 (2010)Google Scholar
  21. 21.
    Luo M.X., Chen X.B., Ma S.Y., Yang Y.X., Hu Z.M.: Remote preparation of an arbitrary two-qubit state with three-party. Int. J. Theor. Phys. 49, 1262–1273 (2010)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Zeng B., Zhang P.: Remote-state preparation in higher dimension and the parallelizable manifold S n-1. Phys. Rev. A 65, 022316 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    Luo M.X., Chen X.B., Ma S.Y., Yang Y.X., Hu Z.M.: Deterministic remote preparation of an 447 arbitrary W-class state with multiparty. J. Phys. B At. Mol. Opt. Phys. 43, 065501 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Luo M.X., Chen X.B., Ma S.Y., Yang Y.X., Niu X.X.: Joint remote preparation of an arbitrary 416 three-qubit state. Opt. Commun. 83, 4796–4801 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Verstraete F., Dehaene J., DeMoor B.: Entanglement versus Bell violations and their behaviour under local filtering operations. Phys. Rev. A 64, 010101 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    Gavinsky, D., Kempe, J., and de Wolf, R.: Quantum Communication Cannot Simulate a Public Coin. quant-ph/0411051Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ming-Xing Luo
    • 1
  • Yun Deng
    • 2
  • Xiu-Bo Chen
    • 3
    • 4
  • Yi-Xian Yang
    • 3
    • 4
  1. 1.Information Security and National Computing Grid Laboratory, School of Information Science and TechnologySouthwest Jiaotong UniversityChengduChina
  2. 2.Institute of Computer ScienceSichuan University of Science & EngineeringZigongChina
  3. 3.Information Security CenterBeijing University of Posts and TelecommunicationsBeijingChina
  4. 4.State Key Laboratory of Information Security (Graduate University of Chinese Academy of Sciences)BeijingChina

Personalised recommendations