Quantum Information Processing

, Volume 12, Issue 1, pp 229–236 | Cite as

Relations between entanglement, Bell-inequality violation and teleportation fidelity for the two-qubit X states

  • Ming-Liang Hu


Based on the assumption that the receiver Bob can apply any unitary transformation, Horodecki et al. (Phys Lett A 222:21–25, 1996) proved that any mixed two spin-1/2 state which violates the Bell-CHSH inequality is useful for teleportation. Here, we further show that any X state which violates the Bell-CHSH inequality can also be used for nonclassical teleportation even if Bob can only perform the identity or the Pauli rotation operations. Moreover, we showed that the maximal difference between the two average fidelities achievable via Bob’s arbitrary transformations and via the sole identity or the Pauli rotation is 1/9.


Entanglement Bell inequality Teleportation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  2. 2.
    Bell J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195 (1964)Google Scholar
  3. 3.
    Clauser J.F., Horne M.A., Shimony A., Holt R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)ADSCrossRefGoogle Scholar
  4. 4.
    Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Popescu S.: Bell’s inequalities versus teleportation: what is nonlocality?. Phys. Rev. Lett. 72, 797–799 (1994)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Horodecki R., Horodecki M., Horodecki P.: Teleportation, Bell’s inequalities and inseparability. Phys. Lett. A 222, 21–25 (1996)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Yeo Y.: Teleportation via thermally entangled state of a two-qubit Heisenberg XX chain. Phys. Lett. A 309, 215–217 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Yeo Y.: Studying the thermally entangled state of a three-qubit Heisenberg XX ring via quantum teleportation. Phys. Rev. A 68, 022316 (2003)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Yeo Y., Liu T.Q., Lu Y.N., Yang Q.Z.: Quantum teleportation via a two-qubit Heisenberg XY chain-effects of anisotropy and magnetic field. J. Phys. A Math. Gen. 38, 3235–3243 (2005)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Hu M.L.: Robustness of Greenberger–Horne–Zeilinger and W states for teleportation in external environments. Phys. Lett. A 375, 922–966 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Hu M.L.: Teleportation of the one-qubit state in decoherence environments. J. Phys. B At. Mol. Opt. Phys. 44, 025502 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Acín A., Gisin N., Masanes L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Gisin N., Thew R.: Quantum communication. Nat. Photon. 1, 165–171 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Gisin N.: Bell’s inequality holds for all non-product states. Phys. Lett. A 154, 201–202 (1991)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Werner R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)ADSCrossRefGoogle Scholar
  16. 16.
    Yu T., Eberly J.H.: Evolution from entanglement to decoherence. Quantum Inf. Comput. 7, 459–468 (2007)MathSciNetMATHGoogle Scholar
  17. 17.
    Horodecki M., Horodecki P., Horodecki R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888–1898 (1999)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Bowen G., Bose S.: Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity. Phys. Rev. Lett. 87, 267901 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    Albeveio S., Fei S.M., Yang W.L.: Optimal teleportation based on bell measurements. Phys. Rev. A 66, 012301 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    Horodecki R., Horodecki P., Horodecki M.: Violating Bell inequality by mixed spin-1/2 states: necessary and sufficient condition. Phys. Lett. A 200, 340–344 (1995)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    Verstraete F., Wolf M.M.: Entanglement versus Bell violations and their behavior under local filtering operations. Phys. Rev. Lett. 89, 170401 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of ScienceXi’an University of Posts and TelecommunicationsXi’anChina

Personalised recommendations