Quantum Information Processing

, Volume 12, Issue 1, pp 189–204 | Cite as

High fidelity and flexible quantum state transfer in the atom-coupled cavity hybrid system

  • B. F. C. Yabu-uti
  • J. A. Roversi


We investigate a system composed of N coupled cavities (linear array) and two-level atoms interacting one at a time. Adjusting appropriately the atom-field detuning, and making the hopping rate of photons between neighboring cavities, A, greater than the atom-field coupling g (i.e. AN 3/2 g), we can eliminate the interaction of the atom with the non-resonant normal modes reducing the dynamics to the interaction of the atom with only a single-mode. As an application of this interaction, we propose a two-step protocol for quantum communication of an arbitrary atomic quantum state between distant coupled cavities. In the ideal case, the coupled cavities system acts as a perfect quantum bus and we obtain a flexible and perfect quantum communication for any N. Considering the influence of dissipation, an interesting parity effect emerges and we still obtain a high fidelity quantum state transfer for an appreciable number of cavities with current experimental parameters. We also studied important sources of imperfections during the procedure.


Quantum state transfer Coupled cavities High fidelity Flexibility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raimond J.M., Brune M., Haroche S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Vahala K.J.: Optical microcavities. Nature 424, 839–846 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Spillane S.M., Kippenberg T.J., Vahala K.J., Goh K.W., Wilcut E., Kimble H.J.: Ultrahigh- q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71, 013817 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Sauer J.A., Fortier K.M., Chang M.S., Hamley C.D., Chapman M.S.: Cavity qed with optically transported atoms. Phys. Rev. A 69, 051804 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Aoki T., Dayan B., Wilcut E., Bowen W.P., Parkins A.S., Kippenberg T.J., Vahala K.J., Kimble H.J.: Observation of strong coupling between one atom and a monolithic microresonator. Nature 443, 671–674 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Trupke M., Hinds E.A., Eriksson S., Curtis E.A., Moktadir Z., Kukharenka E., Kraft M.: Microfabricated high-finesse optical cavity with open access and small volume. Appl. Phys. Lett. 87, 211106 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Barclay P.E., Srinivasan K., Painter O., Lev B., Mabuchi H.: Integration of fiber-coupled high-q sin[sub x] microdisks with atom chips. Appl. Phys. Lett. 89, 131108 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Škarja M., Mankoč Borštnik N., Löffler M., Walther H.: Quantum interference and atom-atom entanglement in a two-mode, two-cavity micromaser. Phys. Rev. A 60, 3229–3232 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    Serafini A., Mancini S., Bose S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Angelakis D.G., Santos M.F., Bose S.: Photon-blockade-induced mott transitions and xy spin models in coupled cavity arrays. Phys. Rev. A 76, 031805 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Nohama F.K., Roversi J.A.: Quantum state transfer between atoms located in coupled optical cavities. J. Mod. Opt. 54, 1139–1149 (2007)ADSMATHCrossRefGoogle Scholar
  12. 12.
    Bose S., Angelakis D.G., Burgarth D.: Transfer of a polaritonic qubit through a coupled cavity array. J. Mod. Opt. 54, 2307–2314 (2007)ADSMATHCrossRefGoogle Scholar
  13. 13.
    Hartmann M., Brandão F., Plenio M.: Quantum many-body phenomena in coupled cavity arrays. Laser Photonics Rev. 2, 527–556 (2008)CrossRefGoogle Scholar
  14. 14.
    Yabu-uti B.F.C., Nohama F.K., Roversi J.A.: Generation of an epr pair of atoms in coupled cavities system via an optical fiber. Int. J. Quantum Inf. 6, 1021–1031 (2008)MATHCrossRefGoogle Scholar
  15. 15.
    Ogden C.D., Irish E.K., Kim M.S.: Dynamics in a coupled-cavity array. Phys. Rev. A 78, 063805 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Irish E.K., Ogden C.D., Kim M.S.: Polaritonic characteristics of insulator and superfluid states in a coupled-cavity array. Phys. Rev. A 77, 033801 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Bose S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Osborne T.J., Linden N.: Propagation of quantum information through a spin system. Phys. Rev. A 69, 052315 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Burgarth D., Bose S.: Perfect quantum state transfer with randomly coupled quantum chains. New J. Phys. 7, 135 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Christandl M., Datta N., Dorlas T.C., Ekert A., Kay A., Landahl A.J.: Perfect transfer of arbitrary states in quantum spin networks. Phys. Rev. A 71, 032312 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    Bose S.: Quantum communication through spin chain dynamics: an introductory overview. Contemp. Phys. 48, 13–30 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Zhang K., Li Z.Y.: Transfer behavior of quantum states between atoms in photonic crystal coupled cavities. Phys. Rev. A 81, 033843 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Plenio M.B., Semião F.L.: High efficiency transfer of quantum information and multiparticle entanglement generation in translation-invariant quantum chains. New J. Phys. 7, 73 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Scully M.O., Zubairy M.S.: Quantum Optics. Cambrigde University Press, Cambrigde (1997)Google Scholar
  25. 25.
    Walls D.F., Milburn G.J.: Quantum Optics. Springer, Berlin (2008)MATHCrossRefGoogle Scholar
  26. 26.
    Jaynes E., Cummings F.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963)CrossRefGoogle Scholar
  27. 27.
    Yariv A., Xu Y., Lee R.K., Scherer A.: Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24, 711–713 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    Haus H., Huang W., Kawakami S., Whitaker N.: Coupled-mode theory of optical waveguides. J. Lightwave Technol. 5, 16–23 (1987)ADSCrossRefGoogle Scholar
  29. 29.
    Rai A., Agarwal G.S., Perk J.H.H.: Transport and quantum walk of nonclassical light in coupled waveguides. Phys. Rev. A 78, 042304 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Lü X.Y., Si L.G., Wang M., Zhang S.Z., Yang X.: Generation of entanglement between two spatially separated atoms via dispersive atom-field interaction. J. Phys. B: Atomic Mol. Opt. Phys. 41, 235502 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    Peng P., Li F.L.: Entangling two atoms in spatially separated cavities through both photon emission and absorption processes. Phys. Rev. A 75, 062320 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    de Ponte M.A., Mizrahi S.S., Moussa M.H.Y.: Networks of dissipative quantum harmonic oscillators: a general treatment. Phys. Rev. A 76, 032101 (2007)MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Purcell E.M.: Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)CrossRefGoogle Scholar
  34. 34.
    Horodecki M., Horodecki P., Horodecki R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888–1898 (1999)MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Akahane Y., Asano T., Song B.S., Noda S.: High-q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    Altug H., Vučković J.: Two-dimensional coupled photonic crystal resonator arrays. Appl. Phys. Lett. 84, 161–163 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    Na N., Utsunomiya S., Tian L., Yamamoto Y.: Strongly correlated polaritons in a two-dimensional array of photonic crystal microcavities. Phys. Rev. A 77, 031803 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Badolato A., Hennessy K., Atatüre M., Dreiser J., Hu E., Petroff P.M., Imamoğlu A.: Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    Hennessy K., Badolato A., Winger M., Gerace D., Atatüre M., Gulde S., Fält S., Hu E.L., Imamoğlu A.: Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    Spillane S.M., Kippenberg T.J., Painter O.J., Vahala K.J.: Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    Rabl P., DeMille D., Doyle J.M., Lukin M.D., Schoelkopf R.J., Zoller P.: Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits. Phys. Rev. Lett. 97, 033003 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    Petrosyan D., Fleischhauer M.: Quantum information processing with single photons and atomic ensembles in microwave coplanar waveguide resonators. Phys. Rev. Lett. 100, 170501 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    Yin Z.Q., Li F.L.: Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber. Phys. Rev. A 75, 012324 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Instituto de Física “Gleb Wataghin”Universidade Estadual de CampinasCampinasBrazil

Personalised recommendations