Quantum Information Processing

, Volume 12, Issue 1, pp 69–82 | Cite as

Beam splitting and entanglement generation: excited coherent states

  • K. Berrada
  • S. Abdel-Khalek
  • H. Eleuch
  • Y. Hassouni


We study the mathematical properties of the excited coherent states, which are obtained through actions of a photon creation operator of the mode optical field on its corresponding coherent state, by analyzing the minimal set of Klauder’s coherent states. Using linear entropy as a measure of entanglement, we investigate in detail the entanglement generated via a beam splitter when an excited coherent state is injected on one input mode and vacuum state is injected on the other one. Finally, we examine the physical properties of the excited coherent states through the Mandel’s parameter and the Wehrl entropy and we give the correlation between these parameters and the entanglement of the output state.


Quantum entanglement Coherent states Beam splitter Linear entropy Statistical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bell J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964)Google Scholar
  2. 2.
    Einstein A., Podolsky B., Rosen N.: Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev. 47, 777–780 (1935)ADSMATHCrossRefGoogle Scholar
  3. 3.
    Nielsen M.A., Chuang I.L.: Quantum Computation and Information. Cambridge University Press, Cambridge, UK (2000)MATHGoogle Scholar
  4. 4.
    Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Agrawal P., Pati A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Yin Z.Q. et al.: Security of counterfactual quantum cryptography. Phys. Rev. A 82, 042335 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Noh T.G.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103, 230501 (2009)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Morimae T.: Strong entanglement causes low gate fidelity in inaccurate one-way quantum computation. Phys. Rev. A 81, 060307 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Schaffry M. et al.: Quantum metrology with molecular ensembles. Phys. Rev. A 82, 042114 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Wootters W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27 (2001)MathSciNetMATHGoogle Scholar
  11. 11.
    Bennett C.H., Bernstein H.J., Popescu S., Schumacher B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    Popescu S., Rohrlich D.: Thermodynamics and the measure of entanglement. Phys. Rev. A 56, R3319 (1997)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Zyczkowski K., Horodecki P., Sanpera A., Lewenstein M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Vidal G., Werner R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    Berrada K., El Baz M., Saif F., Hassouni Y., Mnia S.: Entanglement generation from deformed spin coherent states using a beam splitter. J. Phys. A Math. Theor. 42, 285306 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gerry C.C., Benmoussa A.: Beam splitting and entanglement: generalized coherent states, group contraction, and the classical limit. Phys. Rev. A 71, 062319 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Tan S.M., Walls D.F., Collett M.J.: Nonlocality of a single photon. Phys. Rev. Lett. 66, 252–255 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    Sanders B.C.: Entangled coherent states. Phys. Rev. A 45, 6811–6815 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    Sanders B.C., Lee K.S., Kim M.S.: Optical homodyne measurements and entangled coherent states. Phys. Rev. A 52, 735–741 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    Toth G., Simon C., Cirac J.I.: Entanglement detection based on interference and particle counting. Phys. Rev. A 68, 062310 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Kim M.S., Son W., Buzek V., Knight P.L.: Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement. Phys. Rev. A 65, 032323 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Rauschenbeutel A., Nogues G., Osnaghi S., Bertet P., Brune M., Raimond J.M., Haroche S.: Step-by-step engineered multiparticle entanglement. Science 288, 2024 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    Zheng S.-B., Guo G.-C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392–2395 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    Zhang J.S., Chen A.X., Abdel-Aty M.: Two atoms in dissipative cavities in dispersive limit: entanglement sudden death and long-lived entanglement. J. Phys. B At. Mol. Opt. Phys. 43, 025501 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Gershenfeld N., Chuang I.L.: Bulk spin-resonance quantum computation. Science 275, 350–356 (1997)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Braunstein L., Caves C.M., Jozsa R., Linden N., Popescu S., Schack R.: Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83, 1054–1057 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    Ivan, J.S., Mukunda, N., Simon, R.: Generation of NPT Entanglement from Nonclassical Photon Statistics. Quant-Ph/0603255Google Scholar
  28. 28.
    Berrada K., El Baz M., Hassouni Y.: Generalized spin coherent states: construction and some physical properties. J. Stat. Phys. 142, 510 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    Berrada K., Hassouni Y.: Maximal entanglement of bipartite spin states in the context of quantum algebra. Eur. Phys. J. D 61, 513 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    Berrada K., El Baz M., Hassouni Y.: Generalized Heisenberg algebra coherent states for power-law potentials. Phys. Lett. A 375, 298 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  31. 31.
    Eleuch H.: Photon statistics of light in semiconductor microcavities. J. Phys. B 41, 055502 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Hassouni Y., Curado E.M.F., Rego-Monteiro M.A.: Construction of coherent states for physical algebraic systems. Phys. Rev. A 71, 022104 (2005)MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Eleuch H., Rachid N.: Autocorrelation function of microcavity-emitting field in the non-linear regime. Eur. Phys. J. D 57, 259 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    Eleuch H., Bennaceur R.: Nonlinear dissipation and the quantum noise of light in semiconductor microcavities. J. Opt. B Quantum Semiclassical Opt. 6, 189 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    Glauber R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Perlomov A.M.: Coherent states for arbitrary Lie group. Commun. Math. Phys. 26, 222 (1972)ADSCrossRefGoogle Scholar
  37. 37.
    Perelomov A.: Generalized Coherent States and Their Applications. Springer, New York (1986)MATHCrossRefGoogle Scholar
  38. 38.
    Zhang W.M., Feng D.H., Gilmore R.: Coherent states, theory and some applications. Rev. Mod. Phys. 62, 867–927 (1990)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Inomata A., Kuratsuji H., Gerry C.: Path Integrals and Coherent States of SU(2) and SU(1,1). World Scientific, Singapore (1992)Google Scholar
  40. 40.
    Agarwal G.S., Tara K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 492–497 (1991)ADSCrossRefGoogle Scholar
  41. 41.
    Markham D., Vedral V.: Classicality of spin-coherent states via entanglement and distinguishability. Phys. Rev. A 67, 042113 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    Nielsen M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436–439 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    Mandel L., Wolf E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1955)Google Scholar
  44. 44.
    Wehrl A.: On the relation between classical and quantum-mechanical entropy. Rep. Math. Phys. 16, 353–358 (1979)MathSciNetADSMATHCrossRefGoogle Scholar
  45. 45.
    Short R., Mandel L.: Observation of sub-poissonian photon statistics. Phys. Rev. Lett. 51, 384–387 (1983)ADSCrossRefGoogle Scholar
  46. 46.
    Perina J., Hradil Z., Jurco B.: Quantum Optics and Fundamentals of Physics. Kluwer, Dordrechet (1994)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • K. Berrada
    • 1
    • 3
  • S. Abdel-Khalek
    • 1
    • 2
  • H. Eleuch
    • 4
  • Y. Hassouni
    • 3
  1. 1.Abdus Salam International Centre for Theoretical Physics, ICTPTriesteItaly
  2. 2.Mathematics Department, Faculty of ScienceSohag UniversitySohagEgypt
  3. 3.Laboratoire de Physique Théorique URAC 13, Faculté des SciencesUniversité Mohammed V-AgdalAgdal RabatMorocco
  4. 4.Department of Physics and AstronomyInstitute for Quantum Science and Engineering, Texas UniversityCollege StationUSA

Personalised recommendations