Quantum Information Processing

, Volume 12, Issue 3, pp 1429–1438 | Cite as

Quantum state transfer with a two-dimensional Cooper-pair box qubit array



A theoretical scheme is proposed to transfer quantum state with a two-dimensional Cooper-pair box qubit array in circuit QED devices, in which coplanar transmission line resonators play the role of a quantum data bus. Based on the Raman transitions, the resonator-assisted quantum state transfer between any selected pair of qubits can be performed by addressing the local gate pulses. Thus the scheme may offer an effective route towards scalable quantum state transfer with superconducting qubits.


Quantum state transfer Cooper-pair box qubit array Circuit QED 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clarke J., Wilhelm F.K.: Superconducting quantum bits. Nature 453, 1031 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Devoret M.H., Martinis J.M.: Implementing qubits with superconducting integrated circuits. Quantum Inf. Process. 3, 163 (2004)MATHCrossRefGoogle Scholar
  3. 3.
    Knill E.: Quantum computing. Nature 463, 441 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Vion D. et al.: Manipulating the quantum state of an electrical circuit. Science 296, 886 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    You J.Q., Nori F.: Superconducting circuits and quantum information. Phys. Today 58, 42 (2005)CrossRefGoogle Scholar
  6. 6.
    Zhu S.L., Wang Z.D., Zanardi P.: Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys. Rev. Lett. 94, 100502 (2005)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Feng Z.B., Zhang Y.M., Wang G.Z., Han H.: Detecting non-Abelian geometric phases with superconducting nanocircuits. Physica E 41, 1859 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Yu L.B., Xue Z.Y.: Implementation of a quantum conditional phase gate for the quantum fourier transform in circuit QED. Chin. Phys. Lett. 27, 070305 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Wallquist M., Shumeiko V.S., Wendin G.: Selective coupling of superconducting charge qubits mediated by a tunable stripline cavity. Phys. Rev. B 74, 224506 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Chen G., Chen Z., Yu L., Liang J.: One-step generation of cluster states in superconducting charge qubits coupled with a nanomechanical resonator. Phys. Rev. A 76, 024301 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Feng Z.B.: Coupling charge qubits via Raman transitions in circuit. Phys. Rev. A 78, 032325 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Majer J. et al.: Coupling superconducting qubits via a cavity bus. Nature 449, 443 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Sillanpää M.A., Park J.I., Simmonds R.W.: Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    DiCarlo L. et al.: Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Helmer F. et al.: Cavity grid for scalable quantum computation with superconducting circuits. Europhys. Lett. 85, 50007 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Lin G.W. et al.: Scalable, high-speed one-way quantum computer in coupled-cavity arrays. Appl. Phys. Lett. 95, 224102 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Fisher R. et al.: Optimal control of circuit quantum electrodynamics in one and two dimensions. Phys. Rev. B 81, 085328 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Wei L.F. et al.: Controllable coherent population transfers in superconducting qubits for quantum computing. Phys. Rev. Lett. 100, 113601 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Li P.B., Gu Y., Gong Q.H., Guo G.C.: Quantum information transfer in a coupled resonator waveguide. Phys. Rev. A 79, 042339 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Lyakhov A., Bruder C.: Quantum state transfer in arrays of flux qubits. New J. Phys. 7, 181 (2005)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Wang Y.D., Wang Z.D., Sun C.P.: Quantum storage and information transfer with superconducting qubits. Phys. Rev. B 72, 172507 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Wu Q.Q., Liao J.Q., Kuang L.M.: Quantum state transfer between charge and flux qubits in circuit-QED. Chin. Phys. Lett. 25, 1179 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Feng Z.B. et al.: Quantum information transfer with Cooper-pair box qubits in circuit QED. Opt. Commun. 283, 1975 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Xue Z.Y., Wang Z.D., Zhu S.L.: Physical implementation of topologically decoherence-protected superconducting qubits. Phys. Rev. A 77, 024301 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Feng Z.B., Wang H.L., Han H., Yan R.Y.: Scalable quantum computing in decoherence-free subspaces with Cooper-pair box qubits. Phys. Lett. A 374, 539 (2010)ADSMATHCrossRefGoogle Scholar
  26. 26.
    Liu Y.X. et al.: Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95, 087001 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Shi Z.G., Chen X.W., Zhu X.X., Song K.H.: Scheme for realizing quantum computation and quantum information transfer with superconducting qubits coupling to a 1D transmission line resonator. Chin. Phys. B 18, 910 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Feng M.: Quantum computing with trapped ions in an optical cavity via Raman transition. Phys. Rev. A 66, 054303 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    Zhan Z.M., Li W.B.: Posssible realization of cluster states and quantum information transfer in cavity QED via Raman transition. Chin. Phys. Lett. 24, 344 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Yang C.P., Chu S.I., Han S.: Quantum information transfer and entanglement with SQUID qubits in cavity QED: a dark-state scheme with tolerance for nonuniform device parameter. Phys. Rev. Lett. 92, 117902 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    You J.Q., Nakamura Y., Nori F.: Fast two-bit operations in inductively coupled flux qubits. Phys. Rev. B 71, 024532 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Wallraff A. et al.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    Blais A. et al.: Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75, 032329 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    Yao N.Y. et al.: Robust quantum state transfer in random unpolarized spin chains. Phys. Rev. Lett. 106, 040505 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Electric and Information EngineeringXuchang UniversityXuchangChina
  2. 2.Department of physicsZhejiang Ocean UniversityZhoushanChina

Personalised recommendations