Skip to main content
Log in

Entangled brachistochrone: minimum time to reach the target entangled state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We address the question: Given an arbitrary initial state and a general physical interaction what is the minimum time for reaching a target entangled state? We show that the minimum time is inversely proportional to the quantum mechanical uncertainty in the non-local Hamiltonian. We find that the presence of initial entanglement helps to minimize the waiting time. We bring out a connection between the entangled brachistochrone and the entanglement rate. Furthermore, we find that in a bi-local rotating frame the entangling capability is actually a geometric quantity. We give a bound for the time average of entanglement rate for general quantum systems which goes as \({{\bar \Gamma} \le 2 \log N \frac{\Delta H}{\hbar S_0}}\) . The time average of entanglement rate does not depend on the particular Hamiltonian, rather on the fluctuation in the Hamiltonian. There can be infinite number of nonlocal Hamiltonians which may give same average entanglement rate. We also prove a composition law for minimum time when the system evolves under a composite Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. DiVincenzo D.P., Bennett C.H.: Nat. Lond. 404, 247 (2000)

    Article  ADS  Google Scholar 

  2. Sackett C.A. et al.: Nat. Lond. 404, 256 (2000)

    Article  ADS  Google Scholar 

  3. Julsgaard B. et al.: Nat. Lond. 413, 400 (2001)

    Article  ADS  Google Scholar 

  4. Berkley A.J. et al.: Science 3000, 1548 (2003)

    Article  ADS  Google Scholar 

  5. Bennett C.H. et al.: Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bennett C.H., Wiesner S.J.: Phys. Rev. Lett. 69, 2881 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Pati A.K.: Phys. Rev. A 63, 014320 (2000)

    Article  MathSciNet  Google Scholar 

  8. Dur W., Vidal G., Cirac J.I., Linden N., Popescu S.: Phys. Rev. Lett. 87, 137901 (2001)

    Article  ADS  Google Scholar 

  9. Anandan J., Aharonov Y.: Phys. Rev. Lett. 65, 1697 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Pati A.K.: Phys. Lett. A 159, 105 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  11. Pati A.K.: Phys. Rev. A 52, 2576 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  12. Brody D.C.: J. Phys. A Math. Gen. 36, 5587 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Brody D.C., Hook D.W.: J. Phys. A: Math. Gen. 39, L167 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Carlini A., Hosoya A., Koike T., Okudaira Y.: Phys. Rev. Lett. 96, 060503 (2006)

    Article  ADS  Google Scholar 

  15. Giovannetti V., Lloyd S., Maccone L.: Europhys. Lett. 62, 615 (2002)

    Article  ADS  Google Scholar 

  16. Margolus N., Levitin L.B.: Physica D 120, 188 (1998)

    Article  ADS  Google Scholar 

  17. Giovannetti V., Lloyd S., Maccone L.: Phys. Rev. A 67, 052109 (2003)

    Article  ADS  Google Scholar 

  18. Borras A., Zander C., Plastino A.R., Casas M., Plastino A.: Eruophys. Lett. 81, 30007 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  19. Pati A.K.: Phys. Lett. A 262, 296 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Childs A.M., Leung D.W., Verstraete F., Vidal G.: Quantum Inf. Comput. 3, 97 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Wang X., Sanders B.C.: Phys. Rev. A 68, 014301 (2003)

    Article  ADS  Google Scholar 

  22. Bennett C.H., Harrow A.W., Leung D.W., Smolin J.A.: IEEE Trans. Inf. Theory 49, 1895 (2003)

    Article  MathSciNet  Google Scholar 

  23. Childs A.M., Leung D.W., Vidal G.: IEEE Trans. Inf. Theory 50, 1189 (2004)

    Article  MathSciNet  Google Scholar 

  24. Bandyopadhyay S., Lidar D.A.: Phys. Rev. A 70, 0101301 (2004)

    Article  MathSciNet  Google Scholar 

  25. Lari B., Hassan A.S.M., Joag P.: Phys. Rev. A 80, 062305 (2009)

    Article  ADS  Google Scholar 

  26. Pati A.K., Sahu P.K.: Phys. Lett. A 367, 177 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Nielsen M.A., Bremner M.J., Dodd J.L., Childs A.M., Dawson C.M.: Phys. Rev. A 66, 022317 (2002)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Pati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pati, A.K., Pradhan, B. & Agrawal, P. Entangled brachistochrone: minimum time to reach the target entangled state. Quantum Inf Process 11, 841–851 (2012). https://doi.org/10.1007/s11128-011-0309-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0309-z

Keywords

Navigation