Quantum Information Processing

, Volume 11, Issue 4, pp 903–923 | Cite as

Variations on the theme of quantum optical coherence tomography: a review

  • Malvin Carl Teich
  • Bahaa E. A. Saleh
  • Franco N. C. Wong
  • Jeffrey H. Shapiro


We discuss the development of quantum optical coherence tomography (Q-OCT), an imaging modality with a number of potential applications. Although Q-OCT is not expected to replace its eminently successful classical cousin, optical coherence tomography (OCT), it does offer some advantages as a biological imaging paradigm. These include greater axial resolution and higher signal-to-background ratio, immunity to dispersion that can lead to deeper subsurface penetration, and nondestructive probing of light-sensitive samples. Q-OCT also serves as a quantum template for constructing classical systems that mimic its salutary properties.


Quantum Imaging Optical Coherence Tomography Quantum Optical Coherence Tomography Phase-Conjugate Optical Coherence Tomography Chirped-Pulse Optical Coherence Tomography Spontaneous Parametric Down-Conversion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Youngquist R.C., Carr S., Davies D.E.N.: Optical coherence-domain reflectometry: a new optical evaluation technique. Opt. Lett. 12, 158–160 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    Takada K., Yokohama I., Chida K., Noda J.: New measurement system for fault location in optical waveguide devices based on an interferometric technique. Appl. Opt. 26, 1603–1606 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    Danielson B.L., Whittenberg C.D.: Guided-wave reflectometry with micrometer resolution. Appl. Opt. 26, 2836–2842 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    Gilgen H.H., Novàk R.P., Salathé R.P., Hodel W., Beaud P.: Submillimeter optical reflectometry. J. Lightwave Technol. 7, 1225–1233 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    Huang H., Swanson E.A., Lin C.P., Schuman J.S., Stinson W.G., Chang W., Hee M.R., Flotte T., Gregory K., Puliafito C.A., Fujimoto J.G.: Optical coherence tomography. Science 254, 1178–1181 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    Fercher A.F., Hitzenberger C.K.: Optical coherence tomography. In: Wolf, E. (eds) Progress in Optics, vol. 44, chap 4., pp. 215–302. Elsevier, Amsterdam (2002)CrossRefGoogle Scholar
  7. 7.
    Tomlins P.H., Wang R.K.: Theory, developments and applications of optical coherence tomography. J. Phys. D: Appl. Phys. 38, 2519–2535 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Brezinski M.E.: Optical Coherence Tomography: Principles and Applications. Academic, San Diego (2006)Google Scholar
  9. 9.
    Zysk A.M., Nguyen F.T., Oldenburg A.L., Marks D.L., Boppart S.A.: Optical coherence tomography: A review of clinical development from bench to bedside. J. Biomed. Opt. 12, 051403 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Drexler, W., Fujimoto, J. (eds): Optical Coherence Tomography: Technology and Applications. Springer, Berlin (2008)Google Scholar
  11. 11.
    Saleh, B.E.A.: Introduction to Subsurface Imaging, chaps 3 and 4. Cambridge University Press, Cambridge (2011)Google Scholar
  12. 12.
    Eigenwillig C.M., Biedermann B.R., Wieser W., Huber R.: Wavelength swept amplified spontaneous emission source. Opt. Express 17, 18794–18807 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Teich M.C., Keyes R.J., Kingston R.H.: Optimum heterodyne detection at 10.6 μ m in photoconductive Ge:Cu. Appl. Phys. Lett. 9, 357–360 (1966)ADSCrossRefGoogle Scholar
  14. 14.
    Teich M.C.: Laser heterodyning. J. Mod. Opt. (Optica Acta) 32, 1015–1021 (1985)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Hitzenberger C.K., Baumgartner A., Drexler W., Fercher A.F.: Dispersion effects in partial coherence interferometry: Implications for intraocular ranging. J. Biomed. Opt. 4, 144–151 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    Drexler W., Morgner U., Ghanta R.K., Kärtner F.X., Schuman J.S., Fujimoto J.G.: Ultrahigh-resolution ophthalmic optical coherence tomography. Nat. Med. 7, 502–507 (2001)CrossRefGoogle Scholar
  17. 17.
    Fercher A.F., Hitzenberger C.K., Sticker M., Zawadzki R., Karamata B., Lasser T.: Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique. Opt. Commun. 204, 67–74 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Smith E.D.J., Zvyagin A.V., Sampson D.D.: Real-time dispersion compensation in scanning interferometry. Opt. Lett. 27, 1998–2000 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    Fercher A.F., Hitzenberger C.K., Sticker M., Zawadzki R., Karamata B., Lasser T.: Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography. Opt. Express 9, 610–615 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    Teich M.C., Saleh B.E.A., Stoler D.: Antibunching in the Franck-Hertz experiment. Opt. Commun. 46, 244–248 (1983)ADSCrossRefGoogle Scholar
  21. 21.
    Teich M.C., Saleh B.E.A.: Observation of sub-Poisson Franck-Hertz light at 253.7 nm. J. Opt. Soc. Am. B 2, 275–282 (1985)ADSCrossRefGoogle Scholar
  22. 22.
    Teich M.C., Saleh B.E.A.: Photon bunching and antibunching. In: Wolf, E. (eds) Progress in Optics, vol. 26, chap 1., pp. 1–104. North-Holland/Elsevier, Amsterdam (1988)CrossRefGoogle Scholar
  23. 23.
    Teich, M.C., Saleh, B.E.A.: Squeezed states of light. Quantum Opt. 1, 153–191 (1989) [Reprinted in Tutorials in Optics, Moore, D.T. (ed.) Optical Society of America, Washington, D.C. (1992), chap. 3, pp. 29–52]Google Scholar
  24. 24.
    Teich M.C., Saleh B.E.A.: Squeezed and antibunched light. Phys. Today 43(6), 26–34 (1990)CrossRefGoogle Scholar
  25. 25.
    Peřina J., Hradil Z., Jurčo B.: Quantum Optics and Fundamentals of Physics. chaps. 7 and 8. Kluwer, Boston (1994)Google Scholar
  26. 26.
    Mandel L., Wolf E.: Optical Coherence and Quantum Optics. Chap 22. Cambridge University Press, New York (1995)Google Scholar
  27. 27.
    Klyshko, D.N.: Photons and Nonlinear Optics. Nauka, Moscow (1980), chaps. 1 and 6 [Translation: Gordon and Breach, New York (1988)]Google Scholar
  28. 28.
    Saleh B.E.A., Teich M.C.: Fundamentals of Photonics 2nd edn. Wiley, Hoboken (2007)Google Scholar
  29. 29.
    Abouraddy A.F., Nasr M.B., Saleh B.E.A., Sergienko A.V., Teich M.C.: Quantum-optical coherence tomography with dispersion cancellation. Phys. Rev. A 65, 053817 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    Teich, M.C., Saleh, B.E.A., Sergienko, A.V., Abouraddy, A.F., Nasr, M.B.: Quantum Optical Coherence Tomography Data Collection Apparatus and Method for Processing Therefor. U.S. Patent Number 6,882,431, issued 19 April 2005, 6 claimsGoogle Scholar
  31. 31.
    Teich M.C., Wolga G.J.: Multiple-photon processes and higher order correlation functions. Phys. Rev. Lett. 16, 625–628 (1966)ADSCrossRefGoogle Scholar
  32. 32.
    Hong C.K., Ou Z.Y., Mandel L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987)ADSCrossRefGoogle Scholar
  33. 33.
    Larchuk T., Campos R.A., Rarity J.G., Tapster P.R., Jakeman E., Saleh B.E.A., Teich M.C.: Interfering entangled photons of different colors. Phys. Rev. Lett. 70, 1603–1606 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    Fei H.-B., Jost B.M., Popescu S., Saleh B.E.A., Teich M.C.: Entanglement-induced two-photon transparency. Phys. Rev. Lett. 78, 1679–1682 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    Yarnall T., Abouraddy A.F., Saleh B.E.A., Teich M.C.: Spatial coherence effects in second- and fourth-order temporal interference. Opt. Express 16, 7634–7640 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Walton Z.D., Abouraddy A.F., Sergienko A.V., Saleh B.E.A., Teich M.C.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91, 087901 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    Hayat M., Abdullah S., Joobeur A., Saleh B.: Maximum likelihood image estimation using photon-correlated beams. IEEE Trans. Image Proc. 11, 838–846 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    Toussaint K.C. Jr., Di Giuseppe G., Bycenski K.J., Sergienko A.V., Saleh B.E.A., Teich M.C.: Quantum ellipsometry using correlated-photon beams. Phys. Rev. A 70, 023801 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    Teich, M.C., Saleh, B.E.A.: Mikroskopie s kvantově provázanými fotony (in Czech), Československý časopis pro fyziku 47, 3–8 (1997) [Translation: Entangled-photon microscopy. http://people.bu.edu/teich/pdfs/Cesk-English-47-3-1997.pdf]; U.S. Patent No. 5,796,477 (1998)
  40. 40.
    Abouraddy A.F., Saleh B.E.A., Sergienko A.V., Teich M.C.: Role of entanglement in two-photon imaging. Phys. Rev. Lett. 87, 123602 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    Abouraddy A.F., Saleh B.E.A., Sergienko A.V., Teich M.C.: Quantum holography. Opt. Express 9, 498–505 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    Saleh B.E.A., Abouraddy A.F., Sergienko A.V., Teich M.C.: Duality between partial coherence and partial entanglement. Phys. Rev. A 62, 043816 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    Abouraddy A.F., Saleh B.E.A., Sergienko A.V., Teich M.C.: Entangled-photon Fourier optics. J. Opt. Soc. Am. B 19, 1174–1184 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    Saleh, B.E.A, Teich, M.C.: Noise in classical and quantum photon-correlation imaging. In: Friberg, A.T., Dändliker, R. (eds.) Advances in Information Optics and Photonics, vol. PM183, SPIE Press, Bellingham, WA (2008), chap. 21, pp. 423–435Google Scholar
  45. 45.
    Erkmen B.I., Shapiro J.H.: Phase-conjugate optical coherence tomography. Phys. Rev. A 74, 041601(R) (2006)ADSCrossRefGoogle Scholar
  46. 46.
    Le Gouët J., Venkatraman D., Wong F.N.C., Shapiro J.H.: Classical low-coherence interferometry based on broadband parametric fluorescence and amplification. Opt. Express 17, 17874–17887 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    Le Gouët J., Venkatraman D., Wong F.N.C., Shapiro J.H.: Experimental realization of phase-conjugate optical coherence tomography. Opt. Lett. 35, 1001–1003 (2010)CrossRefGoogle Scholar
  48. 48.
    Kaltenbaek R., Lavoie J., Resch K.J.: Classical analogues of two-photon quantum interference. Phys. Rev. Lett. 102, 243601 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    Lavoie J., Kaltenbaek R., Resch K.J.: Quantum-optical coherence tomography with classical light. Opt. Express 17, 3818–3825 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    Nasr M.B., Saleh B.E.A., Sergienko A.V., Teich M.C.: Demonstration of dispersion-cancelled quantum-optical coherence tomography. Phys. Rev. Lett. 91, 083601 (2003)ADSCrossRefGoogle Scholar
  51. 51.
    Nasr M.B., Saleh B.E.A., Sergienko A.V., Teich M.C.: Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography. Opt. Express 12, 1353–1362 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    Steinberg A.M., Kwiat P.G., Chiao R.Y.: Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer. Phys. Rev. A 45, 6659–6665 (1992)ADSCrossRefGoogle Scholar
  53. 53.
    Larchuk T.S., Teich M.C., Saleh B.E.A.: Nonlocal cancellation of dispersive broadening in Mach-Zehnder interferometers. Phys. Rev. A 52, 4145–4154 (1995)ADSCrossRefGoogle Scholar
  54. 54.
    Minaeva O., Bonato C., Saleh B.E.A., Simon D.S., Sergienko A.V.: Odd- and even-order dispersion cancellation in quantum interferometry. Phys. Rev. Lett. 102, 100504 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    Nasr M.B., Goode D.P., Nguyen N., Rong G., Yang L., Reinhard B.M., Saleh B.E.A., Teich M.C.: Quantum optical coherence tomography of a biological sample. Opt. Commun. 282, 1154–1159 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    Nasr M.B., Di Giuseppe G., Saleh B.E.A., Sergienko A.V., Teich M.C.: Generation of high-flux ultra-broadband light by bandwidth amplification in spontaneous parametric down-conversion. Opt. Commun. 246, 521–528 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    Tanzilli S., De Riedmatten H., Tittel W., Zbinden H., Baldi P., De Micheli M., Ostrowsky D.B., Gisin N.: Highly efficient photon-pair source using periodically poled lithium niobate waveguide. Electron. Lett. 37, 26–28 (2001)CrossRefGoogle Scholar
  58. 58.
    Booth M.C., Atatüre M., Di Giuseppe G., Saleh B.E.A., Sergienko A.V., Teich M.C.: Counterpropagating entangled photons from a waveguide with periodic nonlinearity. Phys. Rev. A 66, 023815 (2002)ADSCrossRefGoogle Scholar
  59. 59.
    Guillet de Chatellus H., Sergienko A.V., Saleh B.E.A., Teich M.C., Di Giuseppe G.: Non-collinear and non-degenerate polarization-entangled photon generation via concurrent type-I parametric downconversion in PPLN. Opt. Express 14, 10060–10072 (2006)ADSCrossRefGoogle Scholar
  60. 60.
    Carrasco S., Torres J.P., Torner L., Sergienko A.V., Saleh B.E.A., Teich M.C.: Enhancing the axial resolution of quantum optical coherence tomography by aperiodic quasi-phase-matching. Opt. Lett. 29, 2429–2431 (2004)ADSCrossRefGoogle Scholar
  61. 61.
    Nasr M.B., Carrasco S., Saleh B.E.A., Sergienko A.V., Teich M.C., Torres J.P., Torner L., Hum D.S., Fejer M.M.: Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion. Phys. Rev. Lett. 100, 183601 (2008)ADSCrossRefGoogle Scholar
  62. 62.
    Teich, M.C., Nasr, M.B., Carrasco, S., Saleh, B.E.A., Sergienko, A.V., Torres, J.P., Torner, L., Hum, D.S., Fejer, M.M.: Generating ultra-broadband biphotons via chirped QPM down-conversion. Opt. Photonics News 19 (12), p. 36 and Magazine Cover (2008)Google Scholar
  63. 63.
    Saleh B.E.A., Jost B.M., Fei H.-B., Teich M.C.: Entangled-photon virtual-state spectroscopy. Phys. Rev. Lett. 80, 3483–3486 (1998)ADSCrossRefGoogle Scholar
  64. 64.
    Lissandrin F., Saleh B.E.A., Sergienko A.V., Teich M.C.: Quantum theory of entangled-photon photoemission. Phys. Rev. B 69, 165317 (2004)ADSCrossRefGoogle Scholar
  65. 65.
    Booth M.C., Saleh B.E.A., Sergienko A.V., Teich M.C.: Temperature and wavelength dependence of Fermi-tail photoemission and two-photon photoemission from multialkali semiconductors. J. Appl. Phys. 100, 023521 (2006)ADSCrossRefGoogle Scholar
  66. 66.
    Saleh M.F., Saleh B.E.A., Teich M.C.: Modal, spectral, and polarization entanglement in guided-wave parametric down-conversion. Phys. Rev. A 79, 053842 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    Saleh M.F., Di Giuseppe G., Saleh B.E.A., Teich M.C.: Modal and polarization qubits in Ti:LiNbO 3 photonic circuits for a universal quantum logic gate. Opt. Express 18, 20475–20490 (2010)CrossRefGoogle Scholar
  68. 68.
    Saleh M.F., Di Giuseppe G., Saleh B.E.A., Teich M.C.: Photonic circuits for generating modal, spectral, and polarization entanglement. IEEE Photonics J. 2, 736–752 (2010)CrossRefGoogle Scholar
  69. 69.
    Fiorentino M., Spillane S.M., Beausoleil R.G., Roberts T.D., Battle P., Munro MW.: Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals. Opt. Express 15, 7479–7488 (2007)ADSCrossRefGoogle Scholar
  70. 70.
    Nasr M.B., Minaeva O., Goltsman G.N., Sergienko A.V., Saleh B.E.A., Teich M.C.: Submicron axial resolution in an ultrabroadband two-photon interferometer using superconducting single-photon detectors. Opt. Express 16, 15104–15108 (2008)ADSCrossRefGoogle Scholar
  71. 71.
    Mohan, N., Minaeva, O., Goltsman, G.N., Saleh, M.F., Nasr, M.B., Sergienko, A.V., Saleh, B.E.A., Teich, M.C.: Ultra-broadband coherence-domain imaging using parametric downvonversion and superconducting single-photon detectors at 1064 nm. Appl. Opt. 48, 4009–4017 (2009)Google Scholar
  72. 72.
    Booth M.C., Di Giuseppe G., Saleh B.E.A., Sergienko A.V., Teich M.C.: Polarization-sensitive quantum-optical coherence tomography. Phys. Rev. A 69, 043815 (2004)ADSCrossRefGoogle Scholar
  73. 73.
    Abouraddy A.F., Toussaint K.C. Jr., Sergienko A.V., Saleh B.E.A., Teich M.C.: Ellipsometric measurements using photon pairs generated by spontaneous parametric down-conversion. Opt. Lett. 26, 1717–1719 (2001)ADSCrossRefGoogle Scholar
  74. 74.
    Booth M.C., Saleh B.E.A., Teich M.C.: Polarization-sensitive quantum-optical coherence tomography: Experiment. Opt. Commun. 284, 2542–2549 (2011)ADSCrossRefGoogle Scholar
  75. 75.
    Carrasco S., Torres J.P., Torner L., Sergienko A.V., Saleh B.E.A., Teich M.C.: Spatial-to-spectral mapping in spontaneous parametric downconversion. Phys. Rev. A 70, 043817 (2004)ADSCrossRefGoogle Scholar
  76. 76.
    Carrasco S., Sergienko A.V., Saleh B.E.A., Teich M.C., Torres J.P., Torner L.: Spectral engineering of entangled two-photon states. Phys. Rev. A 73, 063802 (2006)ADSCrossRefGoogle Scholar
  77. 77.
    Carrasco S., Nasr M.B., Sergienko A.V., Saleh B.E.A., Teich M.C., Torres J.P., Torner L.: Broadband light generation by noncollinear parametric downconversion. Opt. Lett. 31, 253–255 (2006)ADSCrossRefGoogle Scholar
  78. 78.
    Mohan, N., Stojanovic, I., Karl, W.C., Saleh, B.E.A., Teich, M.C.: Compressed sensing in optical coherence tomography. In: Conchello, J.-A., Cogswell, C. J., Wilson, T., Brown, T.G. (eds.) Proceedings of SPIE 7570 (Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing), p. 75700L (2010)Google Scholar
  79. 79.
    Pavlovich, J., Karl, W.C., Saleh, B.E.A., Sergienko, A.V., Teich, M.C.: Parameter estimation in quantum optical coherence tomography. OSA/FIO, Paper JWA53 (2005)Google Scholar
  80. 80.
    Torres-Company V., Valencia A., Hendrych M., Torres J.P.: Cancellation of dispersion and temporal modulation with nonentangled frequency-correlated photons. Phys. Rev. A 83, 023824 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Malvin Carl Teich
    • 1
    • 2
  • Bahaa E. A. Saleh
    • 3
    • 4
  • Franco N. C. Wong
    • 5
  • Jeffrey H. Shapiro
    • 6
  1. 1.Quantum Photonics Laboratory, Departments of Electrical & Computer Engineering, Biomedical Engineering, and PhysicsBoston UniversityBostonUSA
  2. 2.Department of Electrical EngineeringColumbia UniversityNew YorkUSA
  3. 3.Quantum Photonics Laboratory, College of Optics and Photonics (CREOL)University of Central FloridaOrlandoUSA
  4. 4.Quantum Photonics Laboratory, Department of Electrical & Computer EngineeringBoston UniversityBostonUSA
  5. 5.Research Laboratory of ElectronicsMassachusetts Institute of TechnologyCambridgeUSA
  6. 6.Research Laboratory of Electronics and Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations