Quantum Information Processing

, Volume 11, Issue 1, pp 41–54 | Cite as

Quantum search in a possible three-dimensional complex subspace

  • Wenliang Jin


Suppose we are given an unsorted database with N items and N is sufficiently large. By using a simpler approximate method, we re-derive the approximate formula cos2 Φ, which represents the maximum success probability of Grover’s algorithm corresponding to the case of identical rotation angles \({\phi=\theta}\) for any fixed deflection angle \({\Phi \in\left[0,\pi/2\right)}\). We further show that for any fixed \({\Phi \in\left[0,\pi/2\right)}\), the case of identical rotation angles \({\phi=\theta}\) is energetically favorable compared to the case \({\left|{\theta - \phi}\right|\gg 0}\) for enhancing the probability of measuring a unique desired state.


Grover’s search algorithm Identical rotation angles Deflection angle Three-dimensional complex subspace 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grover L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)CrossRefADSGoogle Scholar
  2. 2.
    Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and Weaknesses of Quantum Computing, quant-ph/9701001v1Google Scholar
  3. 3.
    Zalka C.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60, 2746–2751 (1999)CrossRefADSGoogle Scholar
  4. 4.
    Farhi E., Gutmann S.: Analog analogue of a digital quantum computation. Phys. Rev. A 57, 2403–2406 (1998)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Pati, A.K.: Fast Quantum Search Algorithm and Bounds on it, quant-ph/9807067v1Google Scholar
  6. 6.
    Jozsa, R.: Searching in Grover’s Algorithm, quant-ph/9901021v1Google Scholar
  7. 7.
    Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight Bounds on Quantum Searching, quant-ph/9605034Google Scholar
  8. 8.
    Grover L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329–4332 (1998)CrossRefADSGoogle Scholar
  9. 9.
    Brassard, G., Høyer, P., Tapp, A.: Quantum counting, quant-ph/9805082Google Scholar
  10. 10.
    Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum Amplitude Amplification and Estimation, quant-ph/0005055v1Google Scholar
  11. 11.
    Ozhigov, Y.: Speedup of iterated quantum search by parallel performance, quant-ph/9904039v4Google Scholar
  12. 12.
    Gingrich R., Williams C.P., Cerf N.: Generalized quantum search with parallelism. Phys. Rev. A 61, 052313 (2000)CrossRefADSGoogle Scholar
  13. 13.
    Long G.L., Li Y.S., Zhang W.L., Niu L.: Phase matching in quantum searching. Phys. Lett. A 262, 27–34 (1999)CrossRefMATHADSMathSciNetGoogle Scholar
  14. 14.
    Biham E., Biham O., Biron D., Grassl M., Lidar D.A.: Grover’s quantum search algorithm for an arbitrary initial amplitude distribution. Phys. Rev. A 60, 2742–2745 (1999)CrossRefADSGoogle Scholar
  15. 15.
    Biham E., Biham O., Biron D., Grassl M., Lidar D.A., Shapira D.: Analysis of generalized Grover quantum search algorithms using recursion equations. Phys. Rev. A 63, 012310 (2000)CrossRefADSGoogle Scholar
  16. 16.
    Carlini, A., Hosoya, A.: Quantum Computers and Unstructured Search: Finding and Counting Items with an Arbitrarily Entangled Initial State, quant-ph/9909089Google Scholar
  17. 17.
    Long, G.L., Xiao, L., Sun, Y.: General phase matching condition for quantum searching, quant-ph/0107013v1Google Scholar
  18. 18.
    Høyer P.: Arbitrary phases in quantum amplitude amplification. Phys. Rev. A 62, 052304 (2000)CrossRefADSGoogle Scholar
  19. 19.
    Li C.M., Hwang C.C., Hsieh J.Y., Wang K.S.: General phase-matching condition for a quantum searching algorithm. Phys. Rev. A 65, 034305 (2002)CrossRefADSGoogle Scholar
  20. 20.
    Hsieh J.Y., Li C.M.: General SU(2) formulation for quantum searching with certainty. Phys. Rev. A 65, 052322 (2002)CrossRefADSGoogle Scholar
  21. 21.
    Li D.F., Li X.X.: More general quantum search algorithm Q = −I γ VI τ U and the precise formula for the amplitude and the non-symmetric effects of different rotating angles. Phys. Lett. A 287, 304–316 (2001)CrossRefMATHADSMathSciNetGoogle Scholar
  22. 22.
    Bhattacharya N., van Linden van den Heuvell H.B., Spreeuw R.J.C.: Implementation of quantum search algorithm using classical fourier optics. Phys. Rev. Lett. 88, 137901 (2002)CrossRefADSGoogle Scholar
  23. 23.
    Long G.L., Yan H.Y., Li Y.S., Tu C.C., Tao J.X., Chen H.M., Liu M.L., Zhang X., Luo J., Xiao L., Zeng X.Z.: Experimental NMR realization of a generalized quantum search algorithm. Phys. Lett. A 286, 121–126 (2001)CrossRefMATHADSMathSciNetGoogle Scholar
  24. 24.
    Jin, W.L., Chen, X.D.: A desired state can not be found with certainty for Grover’s algorithm in a possible three-dimensional complex subspace. Quantum Inf. Process. doi: 10.1007/s11128-010-0209-7, Online First (2010)

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Information Science and TechnologySouthwest Jiaotong UniversityChengduPeople’s Republic of China

Personalised recommendations