Advertisement

Quantum Information Processing

, Volume 10, Issue 5, pp 697–704 | Cite as

Catalysis of entanglement transformation for 2 × 2-dimensional mixed states

  • De-chao Li
  • Zhong-ke Shi
Article

Abstract

At first, the ability of pure states as an entanglement catalysts for transformation between 2 × 2-dimensional mixed states is discussed. Necessary and sufficient conditions for the transformation between 2 × 2-dimensional rank 2 mixed states by entanglement-assisted LOCC operations (ELOCC) are then presented. In addition, the method to construct an entanglement catalyst for transformation between 2 × 2-dimensional rank 2 mixed states is illustrated by an example.

Keywords

Transformation Entanglement catalysis Mixed state 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    DiVincenzo D.: Quantum computation. Science 270, 255 (1995)MathSciNetADSCrossRefMATHGoogle Scholar
  2. 2.
    Bennett C.H. et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Ekert A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Bennett C.H., Bernstein H.J., Popescu S., Schumacher B.: Concentrating partial entanglement by local operations. Phys. Rev. A. 53, 2046 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    Vidal G.: Entanglement of pure states for a single copy. J. Mod. Phys. Rev. Lett. 83, 1046 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Nielsen M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Bhatia R.: Matrix Analysis Graduate Texts in Mathematics, vol. 169. Springer, New York (1997)Google Scholar
  8. 8.
    Jonathan D., Plenio M.B.: Entanglement-assisted local manipulation of pure quantum states. Phys. Rev. Lett. 83, 3566 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Duan, R.Y.: Quantum Entanglement Transformation and Quantum Operation Discrimination. Dissertation of Tsinghua University, Beijing (2006)Google Scholar
  10. 10.
    Gour G.: Infinite number of conditions for local mixed-state manipulations. Phys. Rev. A 72, 022323 (2005)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Li De-chao., Shi Zhong-ke.: Sufficient and necessary conditions of entanglement transformations between mixed states. Int. J. Theor. Phys. 50(1), 95–105 (2011)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Eisert J., Wilkens M.: Catalysis of entanglement manipulation for mixed states. Phys. Rev. Lett. 85, 437 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Nielsen M.A., Chuang I.L.: Quantum Computtation and Quantum Information. Cambridge University Press, Cambridge (2000)Google Scholar
  14. 14.
    Bassi A., Ghirardi G.C.: A general scheme for ensemble purification. Phys. Lett. A 309, 24–28 (2003)MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Mathematics, Physics and Information ScienceZhejiang Ocean UniversityZhoushanChina
  2. 2.College of AutomationNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations