Quantum Information Processing

, Volume 10, Issue 5, pp 697–704 | Cite as

Catalysis of entanglement transformation for 2 × 2-dimensional mixed states

  • De-chao Li
  • Zhong-ke Shi


At first, the ability of pure states as an entanglement catalysts for transformation between 2 × 2-dimensional mixed states is discussed. Necessary and sufficient conditions for the transformation between 2 × 2-dimensional rank 2 mixed states by entanglement-assisted LOCC operations (ELOCC) are then presented. In addition, the method to construct an entanglement catalyst for transformation between 2 × 2-dimensional rank 2 mixed states is illustrated by an example.


Transformation Entanglement catalysis Mixed state 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DiVincenzo D.: Quantum computation. Science 270, 255 (1995)MathSciNetADSCrossRefMATHGoogle Scholar
  2. 2.
    Bennett C.H. et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Ekert A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Bennett C.H., Bernstein H.J., Popescu S., Schumacher B.: Concentrating partial entanglement by local operations. Phys. Rev. A. 53, 2046 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    Vidal G.: Entanglement of pure states for a single copy. J. Mod. Phys. Rev. Lett. 83, 1046 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Nielsen M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Bhatia R.: Matrix Analysis Graduate Texts in Mathematics, vol. 169. Springer, New York (1997)Google Scholar
  8. 8.
    Jonathan D., Plenio M.B.: Entanglement-assisted local manipulation of pure quantum states. Phys. Rev. Lett. 83, 3566 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Duan, R.Y.: Quantum Entanglement Transformation and Quantum Operation Discrimination. Dissertation of Tsinghua University, Beijing (2006)Google Scholar
  10. 10.
    Gour G.: Infinite number of conditions for local mixed-state manipulations. Phys. Rev. A 72, 022323 (2005)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Li De-chao., Shi Zhong-ke.: Sufficient and necessary conditions of entanglement transformations between mixed states. Int. J. Theor. Phys. 50(1), 95–105 (2011)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Eisert J., Wilkens M.: Catalysis of entanglement manipulation for mixed states. Phys. Rev. Lett. 85, 437 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Nielsen M.A., Chuang I.L.: Quantum Computtation and Quantum Information. Cambridge University Press, Cambridge (2000)Google Scholar
  14. 14.
    Bassi A., Ghirardi G.C.: A general scheme for ensemble purification. Phys. Lett. A 309, 24–28 (2003)MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Mathematics, Physics and Information ScienceZhejiang Ocean UniversityZhoushanChina
  2. 2.College of AutomationNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations