Advertisement

Quantum Information Processing

, Volume 10, Issue 5, pp 633–651 | Cite as

An analytic approach to the problem of separability of quantum states based upon the theory of cones

  • D. Salgado
  • J. L. Sánchez-Gómez
  • M. Ferrero
Article

Abstract

Exploiting the cone structure of the set of unnormalized mixed quantum states, we offer an approach to detect separability independently of the dimensions of the subsystems. We show that any mixed quantum state can be decomposed as ρ = (1−λ)C ρ  + λE ρ , where C ρ is a separable matrix whose rank equals that of ρ and the rank of E ρ is strictly lower than that of ρ. With the simple choice \({C_{\rho}=M_{1}\otimes M_{2}}\) we have a necessary condition of separability in terms of λ, which is also sufficient if the rank of E ρ equals 1. We give a first extension of this result to detect genuine entanglement in multipartite states and show a natural connection between the multipartite separability problem and the classification of pure states under stochastic local operations and classical communication. We argue that this approach is not exhausted with the first simple choices included herein.

Keywords

Entanglement Separability Cone Bipartite Multipartite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schrödinger E.: Discussion of probability relations between separated systems. Proc. Cambridge Phil. Soc. 31, 555 (1935)CrossRefADSGoogle Scholar
  2. 2.
    Gisin N.: Quantum nonlocality: how does nature do it?. Science 326, 1357 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Wang X.-B., Hiroshima T., Tomita A., Hayashi M.: Quantum information with Gaussian states. Phys. Rep. 448, 1 (2007)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Nielsen M., Chuang I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  5. 5.
    Woronowicz S.: Positive maps of low dimensional matrix algebras. Rep. Math. Phys. 10, 165 (1976)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Peres A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Horodecki M., Horodecki P., Horodecki R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 8 (1996)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Horodecki P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997)MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Rudolph O.: Further results on the cross norm criterion for separability. Quant. Inf. Process 4, 219 (2005)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Chen K., Wu L.-A.: A matrix realignment method for recognizing entanglement. Quant. Inf. Comp. 3, 193 (2003)MATHGoogle Scholar
  11. 11.
    Lewenstein M., Bruss D., Cirac J., Kraus B., Samsonowicz J., Sanpera A., Tarrach R.: Separability and distillability in composite quantum systems-a primer. J. Mod. Opt. 47, 2841 (2000a)MathSciNetGoogle Scholar
  12. 12.
    Plenio M., Virmani S.: An introduction to entanglement measures. Quant. Inf. Comp. 7, 1 (2007)MathSciNetMATHGoogle Scholar
  13. 13.
    Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Gühne O., Tóth G.: Entanglement detection. Phys. Rep. 474, 1 (2009)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Doherty A., Parrilo P., Spedalieri M.: Distinguishing separable and entangled states. Phys. Rev. Lett. 88, 187904 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Doherty A., Parrilo P., Spedalieri F.: A complete family of separability criteria. Phys. Rev. A 69, 022308 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Pérez-García D.: Deciding separability with a fixed error. Phys. Lett. A 330, 149 (2004)ADSMATHCrossRefGoogle Scholar
  18. 18.
    Terhal B.: Bell inequalities and the separability criterion. Phys. Lett. A 271, 319 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    Lewenstein M., Kraus B., Cirac J.I., Horodecki P.: Optimization of entanglement witnesses. Phys. Rev. A 62, 052310 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    Bruss D., Cirac J.I., Horodecki P., Hulpke F., Kraus B., Lewenstein M., Sanpera A.: Reflections upon separability and distillability. J. Mod. Opt. 49, 1399 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    Amico L., Fazio R., Osterloh A., Vedral V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    Hill R., Waters S.: On the cone of positive semidefinite matrices. Lin. Alg. Appl. 90, 81 (1987)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Lewenstein M., Sanpera A.: Separability and entanglement of composite quantum systems. Phys. Rev. Lett. 80, 2261 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    Karnas S., Lewenstein M.: Separable approximations of density matrices of composite quantum systems. J. Phys. A Math. Gen. 34, 6919 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    Dür W., Vidal G., Cirac J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Lamata L., León J., Salgado D., Solano E.: Inductive classification of multipartite entanglement under SLOCC. Phys. Rev. A 74, 052336 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Werner R.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)ADSCrossRefGoogle Scholar
  28. 28.
    Barker G.: Theory of cones. Lin. Alg. Appl. 39, 263 (1981)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Gühne O., Lütkenhaus N.: Nonlinear entanglement witnesses, covariance matrices and the geometry of separable states. J. Phys. C Conf. Ser. 67, 012004 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Gurvits, L.: Classical deterministic complexity of Edmonds’ problem and quantum entanglement. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pp. 10–19. See also quant-ph/0303055 (2003)Google Scholar
  31. 31.
    Horn R., Johnson C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)MATHCrossRefGoogle Scholar
  32. 32.
    Pittenger A., Rubin M.: Note on separability of the Werner states in arbitrary dimensions. Opt. Comm. 179, 447 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    Deng D.-L., Chen J.-L.: Sufficient and necessary condition of separability for generalized Werner states. Ann. Phys. 324, 408 (2008)MathSciNetADSGoogle Scholar
  34. 34.
    Eisert, J., Gross, D.: Multiparticle entanglement. In: Bruss, D., Leuchs, G. Lectures on Quantum Information., Wiley-VCH, Weinheim (2006)Google Scholar
  35. 35.
    Greenberger D., Horne M., Shimony A., Zeilinger A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131 (1990)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Bastin T., Krins S., Mathonet P., Godefroid M., Lamata L., Solano E.: Operational families of entanglement classes for symmetric N-qubit states. Phys. Rev. Lett. 103, 070503 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    van Loan C.F.: Generalizing the singular value decomposition. SIAM J. Numer. Anal. 13, 76 (1976)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Churchill R., Brown J.: Complex Variables and Its Applications. McGraw Hill, New York (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • D. Salgado
    • 1
    • 2
  • J. L. Sánchez-Gómez
    • 3
  • M. Ferrero
    • 4
  1. 1.D.G. Metodología, Calidad y Tecnologías de la Información y las ComunicacionesInsto. Nacional de EstadísticaMadridSpain
  2. 2.Dpto. Ingeniería InformáticaUniversidad Antonio de NebrijaMadridSpain
  3. 3.Dpto. Física TeóricaUniversidad Autónoma de MadridMadridSpain
  4. 4.Dpto. FísicaUniversidad de OviedoOviedoSpain

Personalised recommendations