Advertisement

Quantum Information Processing

, Volume 10, Issue 3, pp 317–323 | Cite as

Revisiting the security of secure direct communication based on ping-pong protocol[Quantum Inf. Process. 8, 347 (2009)]

  • Yu-Guang Yang
  • Yi-Wei Teng
  • Hai-Ping Chai
  • Qiao-Yan Wen
Article

Abstract

A. Chamoli and C.M. Bhandari presented a secure direct communication based on ping-pong protocol[Quantum Inf. Process. 8, 347 (2009)]. M.Naseri analyzed its security and pointed out that in this protocol any dishonest party can obtain all the other one’s secret message with zero risk of being detected by using fake entangled particles (FEP attack) [M. Naseri, Quantum Inf. Process. online]. In this letter, we reexamine the protocol’s security and discover that except the FEP attack, using a special property of GHZ states, any one dishonest party can also take a special attack, i.e., double-CNOT(Controlled NOT) attack. Finally, a denial-of-service attack is also discussed.

Keywords

Quantum secure direct communication GHZ state Ping-Pong protocol Decoy photons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gisin N., Ribordy G., Tittel W., Zbinden H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)CrossRefADSGoogle Scholar
  2. 2.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, pp. 175–179. IEEE, New York (1984)Google Scholar
  3. 3.
    Bostrom K., Felbinger T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)PubMedCrossRefADSGoogle Scholar
  4. 4.
    Shimizu K., Imoto N.: Communication channels secured from eavesdropping via transmission of photonic Bell states. Phys. Rev. A 60, 157–166 (1999)CrossRefADSGoogle Scholar
  5. 5.
    Deng F.G., Long G.L., Liu X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)CrossRefADSGoogle Scholar
  6. 6.
    Deng F.G., Long G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)CrossRefADSGoogle Scholar
  7. 7.
    Lucamarini M., Mancini S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)PubMedCrossRefADSGoogle Scholar
  8. 8.
    Cai Q.Y., Li B.W.: Improving the capacity of the Bostrom-Felbinger protocol. Phys. Rev. A 69, 054301 (2004)CrossRefADSGoogle Scholar
  9. 9.
    Wang C., Deng F.G., Li Y.S., Liu X.S., Long G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)CrossRefADSGoogle Scholar
  10. 10.
    Nguyen B.A.: Quantum dialogue. Phys. Lett. A 328, 6–10 (2004)CrossRefMATHADSMathSciNetGoogle Scholar
  11. 11.
    Yan F.L., Zhang X.Q.: A scheme for secure direct communication using EPR pairs and teleportation. Eur. Phys. J. B 41, 75–78 (2004)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Lee H., Lim J., Yang H.J.: Quantum direct communication with authentication. Phys. Rev. A 73, 042305 (2006)CrossRefADSGoogle Scholar
  13. 13.
    Zhang Z.J., Liu J., Wang D., Shi S.H.: Comment on Quantum direct communication with authentication. Phys. Rev. A 75, 026301 (2007)CrossRefADSGoogle Scholar
  14. 14.
    Lin S., Wen Q.Y., Gao F.: Quantum secure direct communication with χ-type entangled states. Phys. Rev. A 78, 064304 (2008)CrossRefADSGoogle Scholar
  15. 15.
    Chamoli A., Bhandari C.M.: Secure direct communication based on ping-pong protocol. Quantum Inf. Process. 8, 347 (2009)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Naseri, M.: Comment on: secure direct communication based on ping-pong protocol [Quantum Inf. Process. 8, 347 (2009)]. Quantum Inf. Process. OnlineGoogle Scholar
  17. 17.
    Gao F., Guo F.Z., Wen Q.Y., Zhu F.C.: Comment on Quantum key distribution for d-level systems with generalized Bell states. Phys. Rev. A 72, 066301 (2005)CrossRefADSGoogle Scholar
  18. 18.
    Gao F., Guo F.Z., Wen Q.Y., Zhu F.C.: Comment on Quantum secret sharing based on reusable Greenberger-Horne-Zeilinger states as secure carriers. Phys. Rev. A 72, 036302 (2005)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Gao F., Wen Q.Y., Zhu F.C.: Comment on: Quantum exam [Phys. Lett. A 350 (2006) 174]. Phys. Lett. A 360, 748–750 (2007)CrossRefADSGoogle Scholar
  20. 20.
    Gao F., Lin S., Wen Q.Y., Zhu F.C.: A special eavesdropping on one-sender versus N-receiver QSDC protocol. Chin. Phys. Lett. 25, 1561–1563 (2008)CrossRefADSGoogle Scholar
  21. 21.
    Gao F., Qin S.J., Wen Q.Y., Zhu F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283, 192–195 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yu-Guang Yang
    • 1
    • 3
    • 4
  • Yi-Wei Teng
    • 1
  • Hai-Ping Chai
    • 1
  • Qiao-Yan Wen
    • 2
  1. 1.College of Computer Science and TechnologyBeijing University of TechnologyBeijingChina
  2. 2.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  3. 3.State Key Laboratory of Integrated Services NetworkXidian UniversityXi’anChina
  4. 4.State Key Laboratory of Information SecurityGraduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations