Quantum Information Processing

, Volume 9, Issue 2, pp 233–238 | Cite as

Quantum relative phase, m-tangle, and multi-local Lorentz-group invariant



In this paper we define a family of hermitian operators by which to extract what we call quantum-relative-phase properties of a pure or mixed multipartite quantum state, and we relate these properties to known measures of entanglement, namely the m-tangle and the invariant \({S_{(m)}^2}\) of the multi-local Lorentz-group \({SL(2, \mathbb{C})^{\otimes m}}\) . Our construction is based on the orthogonal complement of a positive operator valued measure on quantum phase.


Quantum entanglement Multipartite quantum systems Quantum information and computation 


03.67.Mn 42.50.Dv 42.50.Hz 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A.,Wootters,W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)CrossRefPubMedMathSciNetADSGoogle Scholar
  2. 2.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)CrossRefADSGoogle Scholar
  3. 3.
    Wootters, W.K.: Quantum Information and Computaion, Vol. 1, No. 1, pp. 27–44. Rinton Press (2000)Google Scholar
  4. 4.
    Wong, A., Christensen, N.: Potential multiparticle entanglement measure. Phys. Rev. A 63, 044301 (2001)CrossRefADSGoogle Scholar
  5. 5.
    Jaeger, G., Sergienko, V., Saleh, A., Teich, C.: Entanglement, mixedness, and spin-flip symmetry in multiple-qubit systems. Phys. Rev. A 68, 022318 (2003)CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Jaeger G.: Quantum Information. An Overview. Springer, New York (2007)MATHGoogle Scholar
  7. 7.
    Heydari, H.: Concurrence classes for an arbitrary multi-qubit state based on positive operator valued measure. J. Phys. A: Math. Gen. 38, 11007–11017 (2005)MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Physics DepartmentStockholm UniversityStockholmSweden

Personalised recommendations