Reservoir cross-over in entanglement dynamics

  • L. Mazzola
  • S. Maniscalco
  • K.-A. Suominen
  • B. M. Garraway


We study the effects of spontaneous emission on the entanglement dynamics of two qubits interacting with a common Lorentzian structured reservoir. We assume that the qubits are initially prepared in a Bell-like state. We focus on the strong coupling regime and study the entanglement dynamics for different regions of the spontaneous emission decay parameter. This investigation allows us to explore the cross-over between common and independent reservoirs in entanglement dynamics.


Entanglement Decoherence Cavity QED 


03.67.Bg 03.65.Ud 03.65.Yz 42.50.-p 


  1. 1.
    Yu T., Eberly J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)CrossRefPubMedADSGoogle Scholar
  2. 2.
    Yu T., Eberly J.H.: Sudden death of entanglement. Science 323, 598 (2009)CrossRefPubMedMathSciNetGoogle Scholar
  3. 3.
    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  4. 4.
    Stenholm S., Suominen K.-A.: Quantum Approach to Informatics. Wiley, NJ (2005)CrossRefMATHGoogle Scholar
  5. 5.
    Haroche S., Raimond J.-M.: Exploring the Quantum: Atoms, Cavities, and Photons. OUP, Oxford (2006)MATHGoogle Scholar
  6. 6.
    Bellomo B., Franco R.L., Compagno G.: Non- Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)CrossRefPubMedADSGoogle Scholar
  7. 7.
    Ficek Z., Tanaś R.: Dark periods and revivals of entanglement in a two-qubit system. Phys. Rev. A 74, 024304 (2006)CrossRefADSGoogle Scholar
  8. 8.
    Bellomo B., Franco R.L., Maniscalco S., Compagno G.: Entanglement trapping in structured environments. Phys. Rev. A 78, 060302(R) (2008)ADSGoogle Scholar
  9. 9.
    Mazzola L., Maniscalco S., Piilo J., Suominen K.-A., Garraway B.M.: Sudden death and sudden birth of entanglement in common structured reservoirs. Phys. Rev. A 79, 042302 (2009)CrossRefADSGoogle Scholar
  10. 10.
    Mazzola, L., Maniscalco, S., Piilo, J., Suominen, K.-A.: Exact dynamics of entanglement and entropy in structured environments. arXiv:0904.2857.Google Scholar
  11. 11.
    Paz J.P., Roncaglia A.J.: Dynamics of the entanglement between two oscillators in the same environment. Phys. Rev. Lett. 100, 220401 (2008)CrossRefPubMedADSGoogle Scholar
  12. 12.
    Almeida M.P. et al.: Environment-induced sudden death of entanglement. Science 316, 579–582 (2007)CrossRefPubMedADSGoogle Scholar
  13. 13.
    Laurat J. et al.: Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling. Phys. Rev. Lett. 99, 180504 (2007)CrossRefPubMedADSGoogle Scholar
  14. 14.
    Harkonen, K., Plastina, F., Maniscalco, S.: Dicke model and environment-induced entanglement in ion-cavity QED. arXiv:0907.0778.Google Scholar
  15. 15.
    Garraway B.M.: Nonperturbative decay of an atomic system in a cavity. Phys. Rev. A 55, 2290–2303 (1997)CrossRefADSGoogle Scholar
  16. 16.
    Breuer H.-P., Petruccione F.: The Theory of Open Quantum Systems. OUP, Oxford (2002)MATHGoogle Scholar
  17. 17.
    Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)CrossRefADSGoogle Scholar
  18. 18.
    Häffner H. et al.: Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005)CrossRefPubMedADSGoogle Scholar
  19. 19.
    Blatt R., Wineland D.: Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008)CrossRefPubMedADSGoogle Scholar
  20. 20.
    Moehring D.L. et al.: Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007)CrossRefPubMedADSGoogle Scholar
  21. 21.
    Guthöhrlein G.R. et al.: A single ion as a nanoscopic probe of an optical field. Nature 414, 49–51 (2001)CrossRefPubMedADSGoogle Scholar
  22. 22.
    Wallraff A. et al.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004)CrossRefPubMedADSGoogle Scholar
  23. 23.
    Majer J. et al.: Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007)CrossRefPubMedADSGoogle Scholar
  24. 24.
    Sillanpää M.A. et al.: Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 443–447 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • L. Mazzola
    • 1
  • S. Maniscalco
    • 1
  • K.-A. Suominen
    • 1
  • B. M. Garraway
    • 2
  1. 1.Department of Physics and AstronomyUniversity of TurkuTurkuFinland
  2. 2.Department of Physics and AstronomyUniversity of SussexFalmer, BrightonUK

Personalised recommendations