Skip to main content
Log in

Quantum error correction via convex optimization

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We show that the problem of designing a quantum information processing error correcting procedure can be cast as a bi-convex optimization problem, iterating between encoding and recovery, each being a semidefinite program. For a given encoding operator the problem is convex in the recovery operator. For a given method of recovery, the problem is convex in the encoding scheme. This allows us to derive new codes that are locally optimal. We present examples of such codes that can handle errors which are too strong for codes derived by analogy to classical error correction techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alicki R., Lidar D.A., Zanardi P.: Internal consistency of fault-tolerant quantum error correction in light of rigorous derivations of the quantum markovian limit. Phys. Rev. A 73, 052311 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  2. Boyd S., Vandenberghe L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  3. Byrd M.S., Lidar D.A.: Empirical determination of bang-bang operations. Phys. Rev. A 67, 012324 (2003)

    Article  ADS  Google Scholar 

  4. Fletcher A.S., Shor P.W., Win M.Z.: Optimum quantum error recovery using semidefinite programming. Phys. Rev. A 75, 012338 (2007)

    Article  ADS  Google Scholar 

  5. Gilchrist A., Langford N.K., Nielsen M.A.: Distance measures to compare real and ideal quantum processes. Phys. Rev. A 71, 062310 (2005)

    Article  ADS  Google Scholar 

  6. Golub G.H., Van Loan C.F.: Matrix Computations. Johns Hopkins University Press, Maryland (1983)

    MATH  Google Scholar 

  7. Gottesman D.: Class of quantum error-correcting codes saturating the quantum hamming bound. Phys. Rev. A 54, 1862 (1996)

    Article  PubMed  ADS  CAS  MathSciNet  Google Scholar 

  8. Knill E., Laflamme R.: Theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900 (1997)

    Article  ADS  CAS  MathSciNet  Google Scholar 

  9. Kosut, R.L., Grace, M., Brif, C., Rabitz, H.: On the distance between unitary propagators of quantum systems of differing dimensions. Eprint. quant-ph/0606064

  10. Kosut R.L., Shabani A., Lidar D.A.: Robust quantum error correction via convex optimization. Phys. Rev. Lett. 100, 020502 (2008)

    Article  PubMed  ADS  Google Scholar 

  11. Kosut, R.L., Walmsley, I.A., Rabitz, H.: Optimal experiment design for quantum state and process tomography and hamiltonian parameter estimation. Eprint. quant-ph/0411093. Mohseni, M., Rezakhani, A.T., Lidar, D.A.: Quantum process tomography: resource analysis of different strategies. Phys. Rev. A 77, 032322 (2008)

    Google Scholar 

  12. Lida, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998). Shabani, A., Lidar, D.A.: Theory of initialization-free decoherence-free subspaces and subsystems. Phys. Rev. A 72, 043203 (2005)

    Google Scholar 

  13. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  14. Reimpell M., Werner R.F.: Iterative optimization of quantum error correcting codes. Phys. Rev. Lett. 94, 080501 (2005)

    Article  PubMed  ADS  CAS  Google Scholar 

  15. Shor P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A 52, R2493 (1995)

    Article  PubMed  ADS  CAS  Google Scholar 

  16. Steane A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)

    Article  PubMed  ADS  CAS  MathSciNet  MATH  Google Scholar 

  17. Yamamoto N., Hara S., Tsumara K.: Suboptimal quantum error correcting procedure based on semidefinite programming. Phys. Rev. A 71, 022322 (2005)

    Article  ADS  Google Scholar 

  18. Zanardi P., Lidar D.A.: Purity and state fidelity of quantum channels. Phys. Rev. A 70, 012315 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Kosut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosut, R.L., Lidar, D.A. Quantum error correction via convex optimization. Quantum Inf Process 8, 443–459 (2009). https://doi.org/10.1007/s11128-009-0120-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-009-0120-2

Keywords

Navigation