Advertisement

Quantum Information Processing

, Volume 8, Issue 5, pp 431–442 | Cite as

Simple schemes for quantum information processing with W-type entanglement

  • Xin-Wen Wang
  • Guo-Jian Yang
  • Yu-Huan Su
  • Min Xie
Article

Abstract

Simple schemes are proposed for implementing deterministic teleportation, superdense coding, and quantum information splitting with W-type entangled states. The physical realization of these schemes should be much simpler than previous ones due to the assistance of an auxiliary particle. We illustrate the ideas in cavity quantum electrodynamics. The important features of our schemes can also be demonstrated in other systems.

Keywords

Teleportation Superdense coding Quantum information splitting W state Cavity quantum electrodynamics 

PACS

03.67.-a 42.50.Dv 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pan J.W., Bouwmeester D., Daniell M. et al.: Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement. Nature 403, 515–519 (2000)PubMedCrossRefADSGoogle Scholar
  2. 2.
    Raussendorf R., Briegel H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)PubMedCrossRefADSGoogle Scholar
  3. 3.
    Wang X.W., Shan Y.G., Xia L.X. et al.: Dense coding and teleportation with one-dimensional cluster states. Phys. Lett. A 364, 7–11 (2007)CrossRefADSGoogle Scholar
  4. 4.
    Yeo Y., Chua W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 060502-1–060502-4 (2006)CrossRefADSGoogle Scholar
  5. 5.
    Wang X.W., Yang G.J.: Generation and discrimination of a type of four-partite entangled state. Phys. Rev. A 78, 024301-1–024301-4 (2008)ADSGoogle Scholar
  6. 6.
    Dür W., Vidal G., Cirac J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314-1–062314-4 (2000)ADSGoogle Scholar
  7. 7.
    Briegel H.J., Raussendorf R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)PubMedCrossRefADSGoogle Scholar
  8. 8.
    Häffner H., Hänsel W., Roos C.F. et al.: Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005)PubMedCrossRefADSGoogle Scholar
  9. 9.
    Wang X.W., Yang G.J.: Hybrid economical telecloning of equatorial qubits and generation of multipartite entanglement. Phys. Rev. A 79, 062315–106231511 (2009)CrossRefADSGoogle Scholar
  10. 10.
    Liu Q., Zhang W.H., Ye L.: Scheme to implement scheme 1 → M economical phase-covariant telecloning via cavity QED. Chin. Phys. Lett. 25, 1947–1949 (2008)CrossRefADSGoogle Scholar
  11. 11.
    Wang X.W., Su Y.H., Yang G.J.: Controlled teleportation against uncooperation of part of supervisors. Quantum Inf. Process. 8, 319–330 (2009)CrossRefGoogle Scholar
  12. 12.
    Cao H.J., Song H.S.: Quantum secure direct communication scheme using a W state and teleportation. Phys. Scr. 74, 572–575 (2006)CrossRefADSMathSciNetMATHGoogle Scholar
  13. 13.
    Cao H.J., Song H.S.: Quantum secure direct communication with W state. Chin. Phys. Lett. 23, 290–292 (2006)CrossRefADSGoogle Scholar
  14. 14.
    Liu J., Liu Y.M., Cao H.J. et al.: Revisiting quantum secure direct communication with W state. Chin. Phys. Lett. 23, 2652–2655 (2006)CrossRefADSGoogle Scholar
  15. 15.
    Dong L., Xiu X.M., Gao Y.J. et al.: Improvement on quantum secure direct communication with W state in noisy channel. Commun. Theor. Phys. 51, 232–234 (2009)CrossRefMATHGoogle Scholar
  16. 16.
    Agrawal P., Pati A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320-1–062320-5 (2006)CrossRefADSGoogle Scholar
  17. 17.
    Zheng S.B.: Splitting quantum information via W states. Phys. Rev. A 74, 054303-1–054303-4 (2006)ADSGoogle Scholar
  18. 18.
    Joo J., Park Y.J., Oh S. et al.: Quantum teleportation via a W state. New J. Phys. 5, 136.1–136.9 (2003)CrossRefGoogle Scholar
  19. 19.
    Shi B.S., Tomita A.: Teleportation of an unknown state by W state. Phys. Lett. A 296, 161–164 (2002)ADSMathSciNetMATHGoogle Scholar
  20. 20.
    Li L., Qiu D.: The states of W-class as shared resources for perfect teleportation and superdense coding. J. Phys. A 40, 10871–10885 (2007)CrossRefADSMathSciNetMATHGoogle Scholar
  21. 21.
    Peng Z.H., Zou J., Liu X.J.: Scheme for implementing efficient quantum information processing with multiqubit W-class states in cavity QED. J. Phys. B 41, 065505-1–065505-7 (2008)Google Scholar
  22. 22.
    Wang Y.H., Song H.S.: Preparation of partially entangled W state and deterministic multi-controlled teleportation. Opt. Commun. 281, 489–493 (2008)ADSGoogle Scholar
  23. 23.
    Zhang Z.J., Cheung C.Y.: Minimal classical communication and measurement complexity for quantum information splitting. J. Phys. B 41, 015503-1–015503-6 (2008)ADSGoogle Scholar
  24. 24.
    Pan G.X., Liu Y.M., Wang Z.Y. et al.: Tripartite splitting arbitrary 2-qubit quantum information by using two asymmetric W states. Commun. Theor. Phys. 51, 227–231 (2009)CrossRefMATHGoogle Scholar
  25. 25.
    Liu Y.M., Yin X.F., Zhang W. et al.: Tripartition of arbitrary single-qubit quantum information by using asymmetric four-qubit W state. Int. J. Quantum Inf. 7, 349–355 (2009)CrossRefMATHGoogle Scholar
  26. 26.
    Bennett C.H., Wiesner J.S.: Communication via one- and two-particle operators on Einstein– Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)PubMedCrossRefADSMathSciNetMATHGoogle Scholar
  27. 27.
    Schuck C., Huber G., Kurtsiefer C. et al.: Complete deterministic linear optics Bell state analysis. Phys. Rev. Lett. 96, 190501-1–190501-4 (2006)CrossRefADSGoogle Scholar
  28. 28.
    Riebe M., Häffner H., Roos C.F. et al.: Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004)PubMedCrossRefADSGoogle Scholar
  29. 29.
    Wang X.W., Liu X., Fang M.F.: One-step discrimination scheme on N-particle Greenberger–Horne–Zeilinger bases. Chin. Phys. 16, 1215–1219 (2007)CrossRefADSGoogle Scholar
  30. 30.
    Bennett C.H., Brassard G., Crepeau C. et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)PubMedCrossRefADSMathSciNetMATHGoogle Scholar
  31. 31.
    Braunstein S.L.: Universal teleportation with a twist. Phys. Rev. Lett. 84, 3486–3489 (2000)PubMedCrossRefADSGoogle Scholar
  32. 32.
    Hillery M., Buzek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Cleve R., Gottesman D., Lo H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)CrossRefADSGoogle Scholar
  34. 34.
    Wootters W.K., Zurek W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)CrossRefADSGoogle Scholar
  35. 35.
    Zheng S.B.: One-step synthesis of multiatom Greenberger–Horne–Zeilinger states. Phys. Rev. Lett. 87, 230404-1–230404-4 (2001)ADSGoogle Scholar
  36. 36.
    Raimond J.M., Brune M., Haroche S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Osnaghi S., Bertet P., Auffeves A. et al.: Coherent control of an atomic collision in a cavity. Phys. Rev. Lett. 87, 037902-1–037902-4 (2001)CrossRefADSGoogle Scholar
  38. 38.
    Gleyzes S., Kuhr S., Guerlin C. et al.: Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446, 297–300 (2007)PubMedCrossRefADSGoogle Scholar
  39. 39.
    Wang X.: Method for generating a new class of multipartite entangled state in cavity quantum electrodynamics. Opt. Commun. 282, 1052–1055 (2009)CrossRefADSGoogle Scholar
  40. 40.
    Wang X.W., Yang G.J.: Schemes for preparing atomic qubit cluster states in cavity QED. Opt. Commun. 281, 5282–5285 (2008)CrossRefADSGoogle Scholar
  41. 41.
    Guo G.P., Li C.F., Li J., Guo G.C.: Scheme for the preparation of multiparticle entanglement in cavity QED. Phys. Rev. A 65, 042102-1–042102-4 (2002)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Xin-Wen Wang
    • 1
  • Guo-Jian Yang
    • 1
  • Yu-Huan Su
    • 1
  • Min Xie
    • 1
  1. 1.Department of Physics, and Applied Optics Beijing Area Major LaboratoryBeijing Normal UniversityBeijingChina

Personalised recommendations