Quantum Information Processing

, Volume 8, Issue 5, pp 361–378 | Cite as

Fast quantum codes based on Pauli block jacket matrices

  • Ying Guo
  • Jun Peng
  • Moon Ho Lee
Open Access


Jacket matrices motivated by the center weight Hadamard matrices have played an important role in signal processing, communications, image compression, cryptography, etc. In this paper, we suggest a design approach for the Pauli block jacket matrix achieved by substituting some Pauli matrices for all elements of common matrices. Since, the well-known Pauli matrices have been widely utilized for quantum information processing, the large-order Pauli block jacket matrix that contains commutative row operations are investigated in detail. After that some special Abelian groups are elegantly generated from any independent rows of the yielded Pauli block jacket matrix. Finally, we show how the Pauli block jacket matrix can simplify the coding theory of quantum error-correction. The quantum codes we provide do not require the dual-containing constraint necessary for the standard quantum error-correction codes, thus allowing us to construct quantum codes of the large codeword length. The proposed codes can be constructed structurally by using the stabilizer formalism of Abelian groups whose generators are selected from the row operations of the Pauli block jacket matrix, and hence have advantages of being fast constructed with the asymptotically good behaviors.


Pauli block matrix Block jacket transform Pauli matrices Abelian group Quantum error-correction codes 


03.65.Bz 89.70.+c 



The authors are grateful to the anonymous referees for their detailed suggestions. This work was supported by Natural Science Foundation of Hunan Province (Nos. 07JJ3128, 2008RS4016), Postdoctoral Science Foundation of China (Nos. 20070420184, 200801341), and in part by Joint Project KOSEF/NSFC Korea Research Foundation KRF-2007-521-D00330, Chonbuk National University, Korea.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Ahmed N., Rao K.R.: Orthogonal Transforms for Digital Signal Processing. Springer, Berlin (1975)MATHGoogle Scholar
  2. 2.
    Lee M.H., Kaveh M.: Fast Hadamard transform based on a simple matrix factorization. IEEE Trans. Acoust. Speech Signal Process. 34(6), 1666–1667 (1986)CrossRefGoogle Scholar
  3. 3.
    Lee M.H.: The center weighted Hardamard transform. IEEE Trans. Circuits Syst. CAS-36, 1247–1249 (1989)Google Scholar
  4. 4.
    Rao K.Y., Hershey J.E.: Hadamard Matrix Analysis and Synthesis. Kluwer, Norwell (1997)Google Scholar
  5. 5.
    Lee M.H.: A new reverse jacket transform and its fast algorithm. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 47(1), 39–47 (2000)MATHCrossRefGoogle Scholar
  6. 6.
    Lee M.H., Rajan B.S., Park J.Y.: A generalized reverse jacket transform. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 48(7), 684–691 (2001)MATHCrossRefGoogle Scholar
  7. 7.
    Chen Z., Lee M.H., Zeng G.: Fast cocyclic jacket transform. IEEE Trans. Signal Process. 56(5), 2143–2148 (2008)CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    MacWilliams F.J., Sloane N.J.A.: The Theory of Error Correcting Codes. Elsevier, Amsterdam (1988)Google Scholar
  9. 9.
    Zeng G., Lee M.H.: A generalized reverse block jacket transform. IEEE Trans. Circuits Syst. I 55(6), 1589–1600 (2008)CrossRefGoogle Scholar
  10. 10.
    Song, W., Lee, M.H.: Orthogonal space-time block codes design using jacket transform for MIMO transmission system. In: IEEE International Conference on Communications (ICC 2008), Beijing, China (2008)Google Scholar
  11. 11.
    Lee M.H., Hou J.: Fast block inverse jacket transform. IEEE Signal Process. Lett. 13(8), 461–464 (2006)CrossRefADSGoogle Scholar
  12. 12.
    Lee M.H., Finlayson K.: A Simple Element Inverse Jacket Transform Coding. IEEE ITW, New Zealand (2005)Google Scholar
  13. 13.
    Lee M.H., Zeng G.: Family of fast jacket transform algorithms. Elect. Lett. 43(11), 651 (2007)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Hottinen A., Tirkkonen O., Wichman R.: Multi-Antenna Transceiver Techniques for 3G and Beyond. Wiley, New York (2003)CrossRefGoogle Scholar
  15. 15.
    Nielsen M.A., Chuang I.L.: Quantum computation and quantum information. Cambrige University Press, Cambridge (2002)Google Scholar
  16. 16.
    Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error-correction via codes over GF(4). IEEE Trans. Inform. Theory 44, 1369–1387 (1998)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Steane A.M.: Enlagement of Calderbank–Shor–Steane quantum codes. IEEE Trans. Inform. Theory 45(7), 2492–2495 (1999)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    MacKay D.J.C., Mitchison G.J., McFadden P.L.: Sparse-graph codes for quantum error correction. IEEE Trans. Inform. Theory 50, 2315–2330 (2004)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Matsumoto R.: Improvement of Ashikhmin–Litsyn–Tsfasman bound for quantum codes. IEEE Trans. Inform. Theory 48, 2122–2125 (2002)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Djordjevic I.B.: Quantum LDPC codes from balanced incomplete block designs. IEEE Commun. Lett. 12(5), 389–391 (2008)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.School of Information Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Department of Information & Communication EngineeringChonbuk National UniversityChonjuKorea

Personalised recommendations