Advertisement

Self-protected quantum algorithms based on quantum state tomography

  • Lian-Ao Wu
  • Mark S. Byrd
Article

Abstract

Only a few classes of quantum algorithms are known which provide a speed-up over classical algorithms. However, these and any new quantum algorithms provide important motivation for the development of quantum computers. In this article new quantum algorithms are given which are based on quantum state tomography. These include an algorithm for the calculation of several quantum mechanical expectation values and an algorithm for the determination of polynomial factors. These quantum algorithms are important in their own right. However, it is remarkable that these quantum algorithms are immune to a large class of errors. We describe these algorithms and provide conditions for immunity.

Keywords

Quantum computation Quantum algorithms Quantum error correction Quantum noise Quantum state tomography 

PACS

03.67.Ac 03.67.Pp 03.65.Yz 03.65.Wj 

References

  1. 1.
    Shor P.W.: Why haven’t more quantum algorithms been found. J. ACM 50, 87–90 (2003)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Shor P.: Progress in quantum algorithms. Quantum Inf. Process. 3, 5–13 (2004)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Shor P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comp. 26, 1484–1509 (1997)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, pp. 212–219. ACM, New York, NY (1996)Google Scholar
  5. 5.
    Feynman R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Lloyd S.: Universal quantum simulators. Science 273, 1073–1078 (1996)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Meyer D.A.: Quantum mechanics of lattice gas automata: one-particle plane waves and potentials. Phys. Rev. E 55, 5261–5269 (1997)CrossRefADSGoogle Scholar
  8. 8.
    Boghosian B.M., Taylor W.: Quantum lattice-gas models for the many-body Schrodinger equation in d dimensions. Phys. Rev. E 57, 54–66 (1998)CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Zalka C.: Simulating quantum systems on a quantum computer. Proc. R. Soc. Lond. Ser. A 454, 313–322 (1998)MATHADSGoogle Scholar
  10. 10.
    Abrams D.S., Lloyd S.: Simulation of many-body fermi systems on a universal quantum computer. Phys. Rev. Lett. 79, 2586–2589 (1997)CrossRefADSGoogle Scholar
  11. 11.
    Terhal B.M.: Bell inequalities and the separability criterion. Phys. Lett. A 271, 319–326 (2000)MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Freedman M.H., Kitaev A., Wang Z.: Simulation of topological field theoriesby quantum computers. Commun. Math. Phys. 227, 587–603 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Lidar D.A., Wang H.: Calculating the thermal rate constant with exponential speed- up on a quantum computer. Phys. Rev. E 59, 2429–2438 (1999)CrossRefADSGoogle Scholar
  14. 14.
    Ortiz G., Gubernatis J.E., Knill E., Laflamme R.: Quantum algorithms for fermionic simulations. Phys. Rev. A 64, 022319-1–022319-14 (2001)CrossRefADSGoogle Scholar
  15. 15.
    Wu L.-A., Byrd M.S., Lidar D.A.: Polynomial-time simulation of the BCS Hamiltonian. Phys. Rev. Lett. 89, 057904-1–057904-4 (2002)ADSMathSciNetGoogle Scholar
  16. 16.
    Jane E., Vidal G., Dür W., Zoller P., Cirac J.I.: Simulation of quantum dynamics with quantum optical systems. Quantum Inf. Comp. 3, 015–037 (2003)Google Scholar
  17. 17.
    Shor P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A 52, R2493–R2496 (1995)CrossRefADSGoogle Scholar
  18. 18.
    Steane A.: Quantum computing. Rep. Prog. Phys. 61, 117 (1998)CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Calderbank A.R., Shor P.W.: Good quantum error correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)CrossRefADSGoogle Scholar
  20. 20.
    Gottesman, D.: Stabilizer Codes and Quantum Error Correction. Ph.D. thesis, California Institute of Technology, Pasadena, CA (1997). Eprint quant-ph/9705052Google Scholar
  21. 21.
    Zanardi P., Rasetti M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306–3309 (1997)CrossRefADSGoogle Scholar
  22. 22.
    Duan L.-M., Guo G.-C.: Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment. Phys. Rev. A 57, 737–741 (1998)CrossRefADSGoogle Scholar
  23. 23.
    Lidar D.A., Chuang I.L., Whaley K.B.: Decoherence free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998)CrossRefADSGoogle Scholar
  24. 24.
    Knill E., Laflamme R., Viola L.: Theory of quantum error correction for general noise. Phys. Rev. Lett. 84, 2525–2528 (2000)MATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Zanardi P., Rasetti M.: Holonomic quantum computation. Phys. Lett. A 264, 94–99 (1999)MATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Pachos J., Zanardi P., Rasetti M.: Non-Abelian Berry connections for quantum computation. Phys. Rev. A 61, 010305(R)-1–010305(R)-4 (1999)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Vogel K., Risken H.: Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40, 2847–2849 (1989)CrossRefADSGoogle Scholar
  28. 28.
    Somma R., Ortiz G., Gubernatis J.E., Knill E., Laflamme R.: Simulating physical phenomena by quantum networks. Phys. Rev. A 65, 042323-1–042323-14 (2002)CrossRefADSGoogle Scholar
  29. 29.
    Paz J.P., Roncaglia A.: Quantum gate arrays can be programmed to evaluate the expectation value of any operator. Phys. Rev. A 68, 052316-1–052316-5 (2003)CrossRefADSGoogle Scholar
  30. 30.
    Alves C.M., Horodecki P., Oi D.K.L., Kwek L.C., Ekert A.K.: Direct estimation of functionals of density operators by local operations and classical communication. Phys. Rev. A 68, 032306-1–032306-4 (2003)CrossRefADSGoogle Scholar
  31. 31.
    D’Ariano G.M., Macchiavello C., Perinotti P.: Optimal phase estimation for qubit mixed states. Phys. Rev. A 72, 042327-1–042327-4 (2005)ADSGoogle Scholar
  32. 32.
    Kitaev, A.: Quantum measurements and the Abelian Stabilizer Problem (1995) (quant-ph/9511026)Google Scholar
  33. 33.
    Cleve R., Ekert A., Macchiavello C., Mosca M.: Quantum algorithms revisited. Proc. R. Soc. Lond. Ser. A 454, 339–354 (1998)MATHMathSciNetCrossRefADSGoogle Scholar
  34. 34.
    Abrams D.S., Lloyd S.: Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Phys. Rev. Lett. 83, 5162–5165 (1999)CrossRefADSGoogle Scholar
  35. 35.
    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, UK (2000)MATHGoogle Scholar
  36. 36.
    Emerson J., Weinstein Y.S., Saraceno M., Lloyd S., Cory D.G.: Pseudo-random unitary operators for quantum information processing. Science 302, 2098–2100 (2003)CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Mohseni M., Lidar D.A.: Direct characterization of quantum dynamics. Phys. Rev. Lett. 97, 170501-1–170501-4 (2006)CrossRefADSGoogle Scholar
  38. 38.
    Braunstein S.L.: Some limits to precision phase measurement. Phys. Rev. A 49, 69–75 (1994)CrossRefADSGoogle Scholar
  39. 39.
    Giovannetti V., Lloyd S., Maccone L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)CrossRefADSGoogle Scholar
  40. 40.
    Brown K.R., Clark R.J., Chuang I.L.: Limitations of quantum simulation examined by simulating a pairing Hamiltonian using nuclear magnetic resonance. Phys. Rev. Lett. 97, 050504-1–050504-4 (2006)CrossRefADSGoogle Scholar
  41. 41.
    Jordan P., Wigner E.: Über das Paulische Äquivalenzverbot. Z. Phys. 47, 631–651 (1928)CrossRefADSGoogle Scholar
  42. 42.
    Wu L.-A., Lidar D.A.: Qubits as parafermions. J. Math. Phys. 43, 4506–4525 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  43. 43.
    Mahler G., Weberruss V.A.: Quantum Networks: Dynamics of Open Nanostructures, 2nd edn. Springer, Berlin (1998)Google Scholar
  44. 44.
    Jakóbczyk L., Siennicki M.: Geometry of Bloch vectors in two-qubit system. Phys. Lett. A 286, 383–390 (2001)MATHCrossRefADSMathSciNetGoogle Scholar
  45. 45.
    Byrd M.S., Khaneja N.: Characterization of the positivity of the density matrix in terms of the coherence vector representation. Phys. Rev. A 68, 062322-1–062322-13 (2003)CrossRefADSMathSciNetGoogle Scholar
  46. 46.
    Kimura G.: The bloch vector for N-level systems. Phys. Lett. A 314, 339–349 (2003)MATHCrossRefADSMathSciNetGoogle Scholar
  47. 47.
    Byrd M.S., Wu L.-A., Lidar D.A.: Overview of quantum error prevention and leakage elimination. J. Mod. Opt. 51, 2449–2460 (2004)MATHCrossRefADSGoogle Scholar
  48. 48.
    Byrd M.S., Lidar D.A.: Empirical determination of Bang–Bang Operations. Phys. Rev. A 67, 012324-1–012324-14 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Chemistry, Chemical Physics Theory Group, Center for Quantum Information and Quantum ControlUniversity of TorontoTorontoCanada
  2. 2.Theoretical Physics and History of ScienceUniversity of the Basque CountryBilbaoSpain
  3. 3.Department of Physics and Department of Computer ScienceSouthern Illinois UniversityCarbondaleUSA

Personalised recommendations