Quantum Information Processing

, Volume 7, Issue 6, pp 251–262 | Cite as

Entanglement assisted classical capacity of a class of quantum channels with long-term memory

  • Nilanjana Datta
  • Yurii Suhov
  • Tony C. Dorlas


In this paper we evaluate the entanglement assisted classical capacity of a class of quantum channels with long-term memory, which are convex combinations of memoryless channels. The memory of such channels can be considered to be given by a Markov chain which is aperiodic but not irreducible. This class of channels was introduced by Datta and Dorlas in (J. Phys. A, Math. Theor. 40:8147–8164, 2007), where its product state capacity was evaluated.


Quantum channels with long-term memory Entanglement assisted classical capacity 




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlswede R.: The weak capacity of averaged channels. Z. Wahrscheinlichkeitstheorie verw. Geb. 11, 61–73 (1968)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bennett C.H., Shor P.W., Smolin J.A., Thapliyal A.V.: Entanglement-assisted classical capacity of a noisy quantum channel. Phys. Rev. Lett. 83, 3081–3084 (1999)CrossRefADSGoogle Scholar
  3. 3.
    Bennett C.H., Shor P.W., Smolin J.A., Thapliyal A.V.: Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Inform. Theory 48, 2637–2655 (2002) quant-ph/0106052MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bjelaković I., Boche H.: Ergodic classical-quantum channels: structure and coding theorems. IEEE Trans. Inform. Theory 54, 723–742 (2008) quant-ph/0609229CrossRefGoogle Scholar
  5. 5.
    Bowen G., Mancini S.: Quantum channels with a finite memory. Phys. Rev. A. 69, 01236 (2004)Google Scholar
  6. 6.
    Cover T.M., Thomas J.A.: Elements of Information Theory. Wiley, New York (1991)MATHGoogle Scholar
  7. 7.
    Datta, N., Dorlas, T.: A quantum version of Feinstein’s lemma and its application to channel coding, In: Proceedings of the International Symposium on Information Theory (ISIT) 2006, Seattle, pp. 441–445 (2006)Google Scholar
  8. 8.
    Datta N., Dorlas T.C.: Coding theorem for a class of quantum channels with long term memory. J. Phys. A, Math. Theor. 40, 8147–8164 (2007) quant-ph/0610049MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Datta, N., Dorlas, T.C.: Classical capacity of quantum channels with general Markovian correlated noise. arXiv:0712.0722Google Scholar
  10. 10.
    Devetak I.: The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inform. Theory 51, 44–55 (2005)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Donald M.J.: Further results on the relative entropy. Math. Proc. Cam. Phil. Soc. 101, 363 (1987)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Hayashi M., Nagaoka H.: General formulas for capacity of classical-quantum channels. IEEE Trans. Inform. Theory 49, 1753–1768 (2003)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Hayden P., Horodecki M., Yard J., Winter A.: A decoupling approach to the quantum capacity, Open Syst. Inf. Dyn. 15, 7–19 (2008) quant-ph/0702005MATHCrossRefGoogle Scholar
  14. 14.
    Holevo A.S.: Capacity of a quantum communications channel. Prob. Inf. Transm. 5, 247–253 (1979)Google Scholar
  15. 15.
    Holevo A.S.: The capacity of a quantum channel with general signal states. IEEE Trans. Inform. Theory 44, 269–273 (1998)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Holevo A.S.: On entanglement-assisted classical capacity. J. Math. Phys. 43, 4326–4333 (2002) quant-ph/0106075MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Hsieh, M., Devetak, I., Winter, A.: Entanglement-assisted capacity of quantum multiple access channels. quant-ph/0511228Google Scholar
  18. 18.
    Jacobs, K.: Almost periodic channels. Colloqium on Comb. Methods in Prob. Theory. Aarhus (1962)Google Scholar
  19. 19.
    Kretschmann D., Werner R.F.: Quantum channels with memory. Phys. Rev. A. 72, 062323 (2005) quant-ph/0502106CrossRefADSGoogle Scholar
  20. 20.
    Loyd S.: Capacity of the noisy quantum channel. Phys. Rev. A. 55, 1613 (1996)CrossRefADSGoogle Scholar
  21. 21.
    Macchiavello C., Palma G.M.: Entanglement-enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A. 65, 050301 (2002)CrossRefADSGoogle Scholar
  22. 22.
    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  23. 23.
    Norris J.R.: Markov Chains, Cambridge Series in Statistical and Probabilistic Mathematics.Cambridge University Press, Cambridge (1997)Google Scholar
  24. 24.
    Ohya M., Petz D.: Quantum Entropy and Its Use. Springer-Verlag, Heidelberg (1993)MATHGoogle Scholar
  25. 25.
    Schumacher B.: Quantum coding. Phys. Rev. A. 51, 2738–2747 (1995)CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Schumacher B.: Sending entanglement through noisy quantum channels. Phys. Rev. A. 54, 2614–2628 (1996)CrossRefADSGoogle Scholar
  27. 27.
    Schumacher B., Westmoreland M.D.: Sending classical information via noisy quantum channels. Phys. Rev. A. 56, 131–138 (1997)CrossRefADSGoogle Scholar
  28. 28.
    Shor, P.W.: The quantum channel capacity and coherent information, MRSI seminar, November 2002Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Statistical Laboratory Centre for Mathematical SciencesUniversity of CambridgeCambridgeUK
  2. 2.School of Theoretical PhysicsDublin Institute for Advanced StudiesDublin 4Ireland

Personalised recommendations