Advertisement

Quantum Information Processing

, Volume 6, Issue 1, pp 9–36 | Cite as

Feedback Control of Spin Systems

  • Claudio Altafini
Article

The feedback stabilization problem for ensembles of coupled spin 1/2 systems is discussed from a control theoretic perspective. The noninvasive nature of the bulk measurement allows in principle for a fully unitary and deterministic closed loop. The Lyapunov-based feedback design presented does not require spins that are selectively addressable. With this method, it is possible to obtain control inputs also for difficult tasks, like suppressing undesired couplings in identical spin systems.

Keywords

Quantum control spin systems feedback stabilization spin decoupling 

Pacs

03.65.-w 02.60.Cb 02.30.Mv 02.70.-c 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abergel D. (2002). Phys. Lett. A. 302, 17–22MATHCrossRefGoogle Scholar
  2. 2.
    Abragam A. (1983). Principles of Nuclear Magnetism. Oxford University Press, Oxford, UKGoogle Scholar
  3. 3.
    F. Albertini and D. D’Alessandro, in Proceedings of the 42nd Conference on Decision and Control, Maui, Hawaii, 2003, p. 439–444Google Scholar
  4. 4.
    Altafini C. (2002). J. Math. Phys. 43(5): 2051–2062MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Altafini C. (2004). Phys. Rev. A 70: 032331CrossRefADSGoogle Scholar
  6. 6.
    C. Altafini, Preprint arXiv:quant-ph/0506268 (2005).Google Scholar
  7. 7.
    Bacciotti A. (1992). Local Stabilizability of Nonlinear Control Systems, volume 8 of Series on Advances in Mathematics for Applied Sciences. World Scientific Publishing Co. Inc., River Edge, NJGoogle Scholar
  8. 8.
    Brown E., Rabitz H. (2002). J. Math. Chem. 31, 17–63MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Cory D., Laflamme R., Knill E., Viola L., Havel T.F., Boulant N., Boutis G., Fortunato E., Lloyd S., Martinez R., Negrevergne C., Pravia M., Shart Y., Teklemarian G., Weinstein Y.S., Zurek Z.H. (2000). Prog. Phys. 48, 875Google Scholar
  10. 10.
    D. D’Alessandro and R. Romano, Further results on the obervability of quantum systems under general measurment, Quantum Information Processing, Vol. 5, pp. 139–160 (2006).Google Scholar
  11. 11.
    Doherty A.C., Habib S., Jacobs K., Mabuchi H., Tan S.M. (2000). Phys. Rev. A 62, 012105CrossRefADSGoogle Scholar
  12. 12.
    Ernst R.R., Bodenhausen G., Wokaun A. (1987). Principles of Magnetic Resonance in One and Two Dimensions. Clarendon Press, Oxford, UKGoogle Scholar
  13. 13.
    A. Ferrante, M. Pavon, and G. Raccanelli, in Proceedings of the 41st Conference on Decision and Control Las Vegas, NV, December 2002, p.46–50Google Scholar
  14. 14.
    Geremia J.M., Stockton J.K., Mabuchi H. (2004). Science 304, 270CrossRefADSGoogle Scholar
  15. 15.
    S. Grivopoulos and B. Bamieh, in Proceedings of the 41st Conference on Decision and Control, Maui, Hawaii,December 2004, p.434–438,Google Scholar
  16. 16.
    Havel T.F., Cory D.G., Lloyd S., Boulant N., Fortunato E.M., Pravia M.A., Teklemariam G., Weinstein Y.S., Bhattacharyya A., Hou J. (2002). Am. J. Phys. 70, 345–362CrossRefADSGoogle Scholar
  17. 17.
    Hopkins A., Jacobs K., Habib S., Schwab K. (2003). Phys. Rev. B 68, 235–328CrossRefGoogle Scholar
  18. 18.
    Jurdjevic V., Quinn J.P. (1978). J. Diff. Eq. 28, 381–389MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Khalil H.K. (1996). Nonlinear Systems 2nd ed. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  20. 20.
    D. E. Koditschek, In Dynamics and Control of Multibody Systems, Contemp. Math., 97. edited by J. E. Marsden, P. S. Krishnaprasad, and J. C. Simo, (American Mathematical Society, Providence, RI 1989).Google Scholar
  21. 21.
    Korotkov A.N. (2005). Phys. Rev. B 71, 201–305(R)CrossRefGoogle Scholar
  22. 22.
    Lidar D.A., Schneider S. (2005). Quant. Inf. Comp. 5, 350MathSciNetGoogle Scholar
  23. 23.
    M. Mirrahimi and P. Rouchon, in MTNS Mathematical Theory of Networks and Systems (Leuven, Belgium, 2004).Google Scholar
  24. 24.
    Rabitz H., de Vivie-Riedle R., Motzkus M., Kompa K. (2000). Science 288, 824–828CrossRefADSGoogle Scholar
  25. 25.
    Sastry S. (1999) Nonlinear Systems: Analysis, Stability and Control, volume 10 of Interdisciplinary Applied Mathematical. Springer, BerlinGoogle Scholar
  26. 26.
    E. Sontag, in Proceedings of the 27th IEEE Conf. on Decision and Control, Austin, TX, 1988, p. 1326–1329Google Scholar
  27. 27.
    Steck D.A., Jacobs K., Mabuchi H., Bhattacharya T., Habib S. (2004). Phys. Rev. Lett. 92, 223004CrossRefADSGoogle Scholar
  28. 28.
    van Handel R., Stockton J.K., Mabuchi H. (2005). IEEE Trans. Automat. Control 50, 768–780CrossRefMathSciNetGoogle Scholar
  29. 29.
    Vettori P. (2002). MTNS Mathematical Theory of Networks and Systems. Perpignan, FranceGoogle Scholar
  30. 30.
    Zhu W., Smit M., Rabitz H. (1999). J. Chem. Phys. 110, 1905–15CrossRefADSGoogle Scholar
  31. 31.
    Zyczkowski K., Slomczyński W. (2000). J. Phys. A 34: 6689CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.SISSA-ISASInternational School for Advanced StudiesTriesteItaly

Personalised recommendations