Skip to main content
Log in

Dephasing of Quantum Bits by a Quasi-Static Mesoscopic Environment

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

We examine coherent processes in a two-state quantum system that is strongly coupled to a mesoscopic spin bath and weakly coupled to other environmental degrees of freedom. Our analysis is specifically aimed at understanding the quantum dynamics of solid-state quantum bits such as electron spins in semiconductor structures and superconducting islands. The role of mesoscopic degrees of freedom with long correlation times (local degrees of freedom such as nuclear spins and charge traps) in qubit-related dephasing is discussed in terms of a quasi-static bath. A mathematical framework simultaneously describing coupling to the slow mesoscopic bath and a Markovian environment is developed and the dephasing and decoherence properties of the total system are investigated. The model is applied to several specific examples with direct relevance to current experiments. Comparisons to experiments suggests that such quasi-static degrees of freedom play an important role in current qubit implementations. Several methods of mitigating the bath-induced error are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Loss D., DiVincenzo D. (1998). Phys. Rev. A 57:120

    Article  ADS  Google Scholar 

  2. Imamoglu A., Awschalom D.D., Burkard G., DiVincenzo D.P., Loss D., Sherwin M., Small A. (1999). Phys. Rev. Lett. 83:4204

    Article  ADS  Google Scholar 

  3. Merkulov I.A., Efros A.L., Rosen M. (2002). Phys. Rev. B 65:205309

    Article  ADS  Google Scholar 

  4. Khaetskii A.V., Loss D., Glazman L. (2002). Phys. Rev. Lett. 88:186802, URL http://publish.aps.org/abstract/prl/v88/p186802.

    Article  Google Scholar 

  5. Taylor J.M., Marcus C.M., Lukin M.D. (2003). Phys. Rev. Lett. 90:206803

    Article  ADS  Google Scholar 

  6. Johnson A.C., Petta J., Taylor J.M., Lukin M.D., Marcus C.M., Hanson M.P., Gossard A.C. (2005). Nature 435:925

    Article  ADS  Google Scholar 

  7. F. H. L. Koppens, J. A. Folk, J. M. Elzerman, R. Hanson, L. H. Willems van , I. T. Vink, H.-P. Tranitz, W. Wegscheider, L. P. Kouwenhoven, and L. M. K. Vandersypen, Science p. 1113719 (2005), URL http://www.sciencemag.org/cgi/content/abstract/1113719v2.

  8. Petta J.R., Johnson A.C., Taylor J.M., Laird E., Yacoby A., Lukin M.D., Marcus C.M. (2005). Science 309:2180

    Article  ADS  Google Scholar 

  9. de Sousa R., Das Sarma S. (2003). Phys. Rev. B 67:033301

    Article  ADS  Google Scholar 

  10. Coish W.A., Loss D. (2004). Phys. Rev. B 70:195340

    Article  ADS  Google Scholar 

  11. Elzerman J.M., Hanson R., van Beveren L.H.W., Witkamp B., Vandersypen L.M.K., Kouwenhoven L.P. (2004). Nature 430:431

    Article  ADS  Google Scholar 

  12. Fujisawa T., Tokura Y., Hirayama Y. (2001). Phys. Rev. B. (Rapid Comm.) 63:081304

    ADS  Google Scholar 

  13. Golovach V.N., Khaetskii A., Loss D. (2004). Phys. Rev. Lett. 93:016601

    Article  ADS  Google Scholar 

  14. Hanson R., Witkamp B., Vandersypen L.M.K., van Beveren L.H.W., Elzerman J.M., Kouwenhoven L.P. (2003). Phys. Rev. Lett. 91:196802

    Article  ADS  Google Scholar 

  15. Vion D., Aassime A., Cottet A., Joyez P., Pothier H., Urbina C., Esteve D., Devorett M. (2002). Science 296:886

    Article  ADS  Google Scholar 

  16. Pashkin A., Yamamoto T., Astafiev O., Nakamura Y., Averin D., Tsai J. (2003). Nature 421:823

    Article  ADS  Google Scholar 

  17. Chiorescu I., Nakamura Y., Harmans C., Mooij J. (2003). Science 299:1869

    Article  ADS  Google Scholar 

  18. Martinis J., Nam S., Aumentado J., Urbina C. (2002). Phys. Rev. Lett. 89:117901

    Article  ADS  Google Scholar 

  19. Simmonds R., Lang K.M., Hite D.A., Nam S., Pappas D.P., Martinis J.M. (2004). Phys. Rev. Lett. 93:077003

    Article  ADS  Google Scholar 

  20. Makhlin Y., Shnirman A. (2004). Phys. Rev. Lett. 92:178301

    Article  ADS  Google Scholar 

  21. Falci G., D’Arrigo A., Mastellone A., Paladino E. (2005). Phys. Rev. Lett. 94:167002

    Article  ADS  Google Scholar 

  22. Stamp P. (2003). The Physics of Communication. World Scientific, New Jersey, chap. 3, pp. 39–82.

    Google Scholar 

  23. Taylor J.M., Imamoglu A., Lukin M.D. (2003). Phys. Rev. Lett. 91:246802

    Article  ADS  Google Scholar 

  24. Weissman M.B. (1988). Rev. Mod. Phys. 60:537

    Article  ADS  Google Scholar 

  25. D. Klauser, W. A. Coish, and D. Loss, e-print: cond-mat/0510177 (2005).

  26. Coish W.A., Loss D. (2005). Phys. Rev. B 72:125337

    Article  ADS  Google Scholar 

  27. X. Hu and S. D. Sarma, e-print: cond-mat/0507725 (2005).

  28. Zurek W.H. (1981). Phys. Rev. D 24:1516

    Article  MathSciNet  ADS  Google Scholar 

  29. Prokof’ev N.V., Stamp P.C.E. (2000). Reports Prog Phys 63:669

    Article  ADS  Google Scholar 

  30. Rose G., Smirnov A.Y. (2001). J. Phys.: Cond. Mat. 13:11027

    Article  ADS  Google Scholar 

  31. Zanardi P., Rasetti M. (1997). Phys. Rev. Lett. 79:3306

    Article  ADS  Google Scholar 

  32. Viola L., Lloyd S. (1998). Phys. Rev. A 58:2733

    Article  MathSciNet  ADS  Google Scholar 

  33. The breakdown of the two-level approximation in superconductor-based qubit designs has already been explored in great detail (Burkard et al. Phys. Rev B. 69, 064503 (2004)) and we instead focus on other sources of error due to local spins, charge traps, etc.

  34. Feynman R.P., Vernon F.L. (1963). Ann. Phys. 24:118

    Article  MathSciNet  ADS  Google Scholar 

  35. Magnus W. (1954). Commun. Pure Appl. Math 7:649

    MATH  MathSciNet  Google Scholar 

  36. Cottet A., et al. (2001). Macroscopic Quantum Coherence and Quantum Computing. Kluwer/Plenum, New York, p. 111

    Google Scholar 

  37. G. Giedke, J. M. Taylor, D. D’Alessandro, M. D. Lukin, and A. Imamoglu, e-print: quantph/ 0508144 (2005).

  38. J. M. Taylor, J. Petta, A. C. Johnson, A. Yacoby, C. M. Marcus, and M. D. Lukin, (in preparation) (2006).

  39. de Sousa R., Das Sarma S. (2003). Phys. Rev. B 68:115322

    Article  ADS  Google Scholar 

  40. W. Yao, R.-B. Liu, and L. J. Sham, e-print: cond-mat/0508441 (2005).

  41. Deng C., Hu X. (2005). Phys. Rev. B 72:165333

    Article  ADS  Google Scholar 

  42. Paget D. (1982). Phys. Rev. B 25:4444

    Article  ADS  Google Scholar 

  43. G. Teklemariam, E. M. Fortunato, C. C. Lopez, J. Emerson, J. P. Paz, T. F. Havel, and D. G. Cory, e-print: quant-ph/0303115 (2003).

  44. For an arbitrary, quasi-static bath (i.e., not necessary a spin-bath) with a density matrix that is diagonal in the eigenbasis of \(\hat{A}_z\), \(\Phi_{\rm FID} = e^{-i \delta t} \int_{-\infty}^{\infty} d \Lambda \rho(\Lambda) e^{-i \Lambda t}\), demonstrating that Φ FID is exactly the inverse Fourier transform of the bath degree of freedom in this case.

  45. By assuming the bath density matrix is diagonal in the \(\hat{A}_z\) eigenbasis, the result derived (Eqn. 40) in fact is generally true for any bath that is non-singular (ρ sym (ω ≥ Ω) not singular) and satisfies u ≥ 0, not just a spin-bath. However, the spin-bath provides a natural case for \([\hat{H}_B,\hat{A}_z] \simeq 0\), as mentioned in the text.

  46. Well-separated singularities in ρsym can be treated as additional stationary phase integral terms, and for each, corresponding oscillations at the resonance with different time-scales u j will emerge.

  47. Gardiner C.W. (1985). Handbook of stochastic methods. Spinger, Berlin, 2nd ed.

    Google Scholar 

  48. Mehring M. (1976). High Resolution NMR Spectroscopy in Solids. Springer-Verlag, Berlin

    Google Scholar 

  49. Paget D., Lampel G., Sapoval B., Safarov V. (1977). Phys. Rev. B 15:5780

    Article  ADS  Google Scholar 

  50. Waugh J., Huber L., Haeberlen U. (1968). Phys. Rev. Lett. 20:180

    Article  ADS  Google Scholar 

  51. Kautz R., Martinis J. (1990). Phys. Rev. B 42:9903

    Article  ADS  Google Scholar 

  52. Galperin Y.M., Gurevich V.L. (1991). Phys. Rev. B 43:12900

    Article  ADS  Google Scholar 

  53. Caldeira A.O., Leggett A.J. (1983). Ann. Phys. 149:347

    Google Scholar 

  54. Chattah A.K., lvarez G.A., Levstein P.R., Cucchietti F.M., Pastawski H.M., Raya J., Hirschinger J. (2003). J. Chem. Phys. 119:7943

    Article  ADS  Google Scholar 

  55. Danieli E.P., Pastawski H.M., Álvarez G.A. (2005). Chem. Phys. Lett. 402:88

    Article  Google Scholar 

  56. Facchi P., Tasaki S., Pascazio S., Nakazato H., Tokuse A., Lidar D. (2005). Phys. Rev. A 71:022302

    Article  ADS  Google Scholar 

  57. Imamolgu A., Knill E., Tian L., Zoller P. (2003). Phys. Rev. Lett. 91:017402

    Article  ADS  Google Scholar 

  58. Arecchi F.T., Courtens E., Gilmore R., Thomas H. (1972). Phys. Rev. A 6:2211, URL http://80-link.aps.org.ezp1.harvard.edu/abstract/PRA/v6/p2211.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Taylor.

Additional information

Dedicated to Anton Zeilinger, whose work has inspired exploration of quantum phenomenon in many avenues of physics and beyond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, J.M., Lukin, M.D. Dephasing of Quantum Bits by a Quasi-Static Mesoscopic Environment. Quantum Inf Process 5, 503–536 (2006). https://doi.org/10.1007/s11128-006-0036-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-006-0036-z

Keywords

PACS

Navigation