Quantum Information Processing

, Volume 4, Issue 4, pp 335–354 | Cite as

From Dirac to Diffusion: Decoherence in Quantum Lattice Gases



We describe a model for the interaction of the internal (spin) degree of freedom of a quantum lattice-gas particle with an environmental bath. We impose the constraints that the particle-bath interaction be fixed, while the state of the bath is random, and that the effect of the particle-bath interaction be parity invariant. The condition of parity invariance defines a subgroup of the unitary group of actions on the spin degree of freedom and the bath. We derive a general constraint on the Lie algebra of the unitary group which defines this subgroup, and hence guarantees parity invariance of the particle-bath interaction. We show that generalizing the quantum lattice gas in this way produces a model having both classical and quantum discrete random walks as different limits. We present preliminary simulation results illustrating the intermediate behavior in the presence of weak quantum noise


Quantum lattice gas decoherence quantum random walk 


03.67.Lx 05.40.Ca 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Doolen G.D., Frisch U., Hasslacher B., Orszag S., Wolfram S. (eds). Lattice Gas Methods for Partial Differential Equations. Addison-Wesley, 1990Google Scholar
  2. 2.
    Boghosian, B.M., Coveney, P.V., Love, P.J. 2000Proc. Roy. Soc. Lond. A4561431cond-mat/9907298Google Scholar
  3. 3.
    Love, P.J. 2002Phil. Trans. R. Soc. Lond. Ser. A360345cond-mat/0109475CrossRefGoogle Scholar
  4. 4.
    Love, P.J., Boghosian, B.M., Meyer, D.A. 2004Phil. Trans. R Soc. Lond. Ser. A3621667cond-mat/0506742CrossRefGoogle Scholar
  5. 5.
    Hasslacher, B., Meyer, D.A. 1998Int. J. Mod Phys. C91597CrossRefGoogle Scholar
  6. 6.
    Meyer, D.A. 2002Phil. Trans. Roy Soc. Lond. A360395quant-ph/0111069CrossRefGoogle Scholar
  7. 7.
    Boghosian, B.M., Taylor, W. 1998Physica D2030CrossRefGoogle Scholar
  8. 8.
    Lloyd, S. 1996Science2615128Google Scholar
  9. 9.
    Abrams, D.S., Lloyd, S. 1997Phys. Rev. Lett792586CrossRefGoogle Scholar
  10. 10.
    Ortiz, G., Knill, E., Gubernatis, J.E. 2002Nucl. Phys. B (Proc. Suppl)106151CrossRefGoogle Scholar
  11. 11.
    Ortiz, G., Gubernatis, J.E., Knill, E., Laflamme, R. 2001Phys. Rev. A64022319CrossRefGoogle Scholar
  12. 12.
    Feynman, R.P. 1984J. Opt. Soc. Am. B3464Google Scholar
  13. 13.
    Feynman, R.P. 1986Found. Phys.16507CrossRefGoogle Scholar
  14. 14.
    Feynman, R.P. 1982Int. J. Theor. Phys21467Google Scholar
  15. 15.
    Meyer, D.A. 1996Phys Lett A223337CrossRefGoogle Scholar
  16. 16.
    Durr, C. 1997Random Struct. Algor11381CrossRefGoogle Scholar
  17. 17.
    Durr, C. 2002SIAM J Comput311076CrossRefGoogle Scholar
  18. 18.
    D.A.Meyer, quant-ph/9605023 (1996)Google Scholar
  19. 19.
    Meyer, D.A. 1996J. Stat. Phys85551CrossRefGoogle Scholar
  20. 20.
    Watrous J. in Proceedings of the 36th Annual Meeting on the Foundations of Computer Science (1995), pp. 528–537Google Scholar
  21. 21.
    Boghosian, B.M., Taylor, W. 1998Phys. Rev. E.5754CrossRefGoogle Scholar
  22. 22.
    Kempe, J. 2003Contemp. Phys.44307quant-ph/0303081CrossRefGoogle Scholar
  23. 23.
    Nielsen, M.A., Chuang, I.L. 2000Quantum Computation and Quantum InformationUniversity PressCambridgeGoogle Scholar
  24. 24.
    Feynman, R.P., Vernon, F.L. 1963Ann. Phys.24118CrossRefGoogle Scholar
  25. 25.
    Caldeira, A.O., Leggett, A. 1983Ann. Phys.149374CrossRefGoogle Scholar
  26. 26.
    Prokof’ev, N.V., Stamp, P.C.E. 2000Rep. Prog. Phys.63669CrossRefGoogle Scholar
  27. 27.
    U.Weiss, Quantum Dissipative Systems (World Scientific, 1993)Google Scholar
  28. 28.
    Wigner E.P. Ann. Math. 53: 36Google Scholar
  29. 29.
    Hill, D.L., Wheeler, J.A. 1953Phys. Rev.891102CrossRefGoogle Scholar
  30. 30.
    Alagic G., Russell, quant-ph/0501169 (2005)Google Scholar
  31. 31.
    Kendon, V.M., Tregenna, B. 2002Phys. Rev. A.67042315quant-ph/0209005CrossRefGoogle Scholar
  32. 32.
    Kendon V.M., Tregenna B. quant-ph/0210047 (2002)Google Scholar
  33. 33.
    V. M. Kendon and B.Tregenna, in Decoherence and Entropy in Complex Systems. (2003); Vol. 633, pp. 253–267, quant-ph/0301182Google Scholar
  34. 34.
    T. A. Brun, H. A. Carteret, and A. Ambainis, quant-ph/0208195 (2002)Google Scholar
  35. 35.
    Brun, T.A., Carteret, H.A., Ambainis, A. 2002Phys. Rev. A.67032304quant-ph/0210180CrossRefGoogle Scholar
  36. 36.
    Kendon, V.M., Sanders, B.C. 2004Phys. Rev. A.71022307quant-ph/0404043CrossRefGoogle Scholar
  37. 37.
    This is sometimes called the “exclusion principle” for lattice gases, but it should be noted that it is unrelated to the Pauli exclusion principleGoogle Scholar
  38. 38.
    Love P.J., Boghosian B.M. (2005). aaaaaa. To appear in Physica A. quant-ph/0506244Google Scholar
  39. 39.
    T. Brocker and T. tomDieck, Representations of Compact Lie Groups (Springer-Verlag, 1985)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of MathematicsTufts UniversityMedfordUSA
  2. 2.D-Wave Systems Inc.British ColumbiaCanada

Personalised recommendations