Psychiatric Quarterly

, Volume 89, Issue 1, pp 235–247 | Cite as

Validation of the Internet Addiction Test in Students at a Pakistani Medical and Dental School

  • Ahmed Waqas
  • Faisal Farooq
  • Mohsin Raza
  • Saamia Tahir Javed
  • Spogmai Khan
  • Mahrukh Elahi Ghumman
  • Sadiq Naveed
  • Mark Haddad
Original Paper


Despite growing concerns over pathological internet usage, studies based on validated psychometric instruments are still lacking in Pakistan. This study aimed to examine the psychometric properties of the Internet Addiction Test (IAT) in a sample of Pakistani students. A total of 522 students of medicine and dentistry completed the questionnaire, which consisted of four sections: (a) demographics, (b) number of hours spent on the Internet per day, (c) English version of the IAT, and (d) the Defense Style Questionnaire-40. Maximum likelihood analysis and principal axis factoring were used to validate the factor structure of the IAT. Convergent and criterion validity were assessed by correlating IAT scores with number of hours spent online and defense styles. Exploratory and confirmatory factor analysis reflected the goodness of fit of a unidimensional structure of the IAT, with a high alpha coefficient. The IAT had good face and convergent validity and no floor and ceiling effects, and was judged easy to read by participants.


Internet Validation Pakistani Students Addiction 



We thank K. Shashok (AuthorAID in the Eastern Mediterranean) for improving the use of English in the manuscript.

Compliance with Ethical Standards


The authors do not have any conflict interests to report.




  1. 1.
    Weinstein A, Lejoyeux M. Internet addiction or excessive internet use. Am J Drug Alcohol Abuse. 2010;36:277–83.CrossRefPubMedGoogle Scholar
  2. 2.
    Young KS. Internet addiction: The emergence of a new clinical disorder. Cyberpsychology & behavior. 1998;1(3):237-44.Google Scholar
  3. 3.
    Petry NM, O’Brien CP. Internet gaming disorder and the DSM-5. Addiction. 2013;108:1186–7.CrossRefPubMedGoogle Scholar
  4. 4.
    American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5. Washington, D.C: American Psychiatric Association.Google Scholar
  5. 5.
    Tao R, Huang X, Wang J, Zhang H, Zhang Y, Li M. Proposed diagnostic criteria for internet addiction. Addiction. 2010;105:556–64.CrossRefPubMedGoogle Scholar
  6. 6.
    Young K. Internet Addicition : diagnosis and treatment considerations. Contemp Psychother. 2009;39:241–6.CrossRefGoogle Scholar
  7. 7.
    Bergmark KH, Bergmark A, Findahl O. Extensive internet involvement-addiction or emerging lifestyle? Int J Environ Res Public Health. 2011;8:4488–501.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Block JJ. Pathological computer use in the USA. International Symposium on the Counseling and Treatment of Youth Internet Addiction. Seoul, Korea, National Youth Commission 2007;433 Google Scholar
  9. 9.
    Shapira N, Lessig M, Goldsmith T, Szabo S, Lazoritz M, Gold M, et al. Problematic internet use: proposed classification and diagnostic criteria. Depress Anxiety. 2003;17:207–16.CrossRefPubMedGoogle Scholar
  10. 10.
    Chen Y-F, Peng S. University students’ internet use and its relationships with academic performance, interpersonal relationships, psychosocial adjustment, and self-evaluation. Cyberpsychol Behav. 2008;11:467–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Gentile DA, Choo H, Liau A, Sim T, Li D, Fung D. Pathological video game use among youths: a two-year longitudinal study. Pediatrics. 2011;127:e319–29.CrossRefPubMedGoogle Scholar
  12. 12.
    Ko C-H, Yen J-Y, Chen C-S, Yeh Y-C, Yen C-F. Predictive values of psychiatric symptoms for internet addiction in adolescents: a 2-year prospective study. Arch Pediatr Adolesc Med. 2009;163:937.CrossRefPubMedGoogle Scholar
  13. 13.
    Leung L. Net-generation attributes and seductive proper- ties of the internet as predictors of online activities and internet addiction. Cyberpsychol Behav. 2004;7:333–48.CrossRefPubMedGoogle Scholar
  14. 14.
    Skinner H, Biscope S, Poland B. Quality of internet access: barrier behind internet use statistics. Soc Sci Med. 2003;57:875–80.CrossRefPubMedGoogle Scholar
  15. 15.
    Young KS. Internet addiction: a new clinical phenomenon and its consequences. Am Behav Sci. 2004;48:402–15.CrossRefGoogle Scholar
  16. 16.
    Young KS. Internet addiction: the emergence of a new clinical disorder. Cyberpsychol Behav. 1998;1:237–44.CrossRefGoogle Scholar
  17. 17.
    Barke A, Nyenhuis N, Kröner-Herwig B. The German version of the internet addiction test: a validation study. Cyberpsychol Behav Soc Netw. 2012;15:534–42.CrossRefPubMedGoogle Scholar
  18. 18.
    Barrault S, Varescon I. Psychopathologie des joueurs pathologiques en ligne: Une ??tude pr??liminaire. L'Encéphale. 2012;38:156–63.CrossRefPubMedGoogle Scholar
  19. 19.
    Hawi NS. Arabic validation of the internet addiction test. Cyberpsychol Behav Soc Netw. 2013;16:200–4.CrossRefPubMedGoogle Scholar
  20. 20.
    Lai CM, Mak KK, Watanabe H, Ang RP, Pang JS, Ho RCM. Psychometric properties of the internet addiction test in chinese adolescents. J Pediatr Psychol. 2013;38:794–807.CrossRefPubMedGoogle Scholar
  21. 21.
    Karim AKMR, Nigar N. The internet addiction test: assessing its psychometric properties in bangladeshi culture. Asian J Psychiatr. 2014;10:75–83.CrossRefGoogle Scholar
  22. 22.
    Tsimtsiou Z, Haidich AB, Kokkali S, Dardavesis T, Young KS, Arvanitidou M. Greek version of the internet addiction test: a validation study. Psychiatry Q. 2014;85:187–95.CrossRefGoogle Scholar
  23. 23.
    Gaskin CJ, Happell B. On exploratory factor analysis: a review of recent evidence, an assessment of current practice, and recommendations for future use. Int J Nurs Stud. 2014;51:511–21.CrossRefPubMedGoogle Scholar
  24. 24.
    Courtney MGR. Determining the number of factors to retain in EFA : using the SPSS R-menu v2. 0 to make more judicious estimations. Pract assessment. Res Eval. 2013;18:1–14.Google Scholar
  25. 25.
    Mundfrom DJ, Shaw DG, Ke TL. Minimum sample size recommendations for conducting factor analyses. Int J Test. 2005;5:159–68.CrossRefGoogle Scholar
  26. 26.
    McHorney C, Ware JJ, Lu J, Sherbourne C. The MOS 36-item short-form health survey (SF-36): III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups. Med Care. 1994;32:40–66.CrossRefPubMedGoogle Scholar
  27. 27.
    Streiner DL, Norman GR, Cairney J. Health measurement scales: a practical guide to their development and use. Oxford University Press, USA; 2015.Google Scholar
  28. 28.
    Hu L, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Model Multidiscip J. 1999;6:1–55.CrossRefGoogle Scholar
  29. 29.
    Flesch R. A new readability yardstick. J Appl Psychol. 1948;32:221–33.CrossRefPubMedGoogle Scholar
  30. 30.
    Kline, R.B. Principles and Practice of Structural Equation Modelling, Guilford Press, New York, NY. 2005.Google Scholar
  31. 31.
    Faraci P, Craparo G, Messina R, Severino S. Internet addiction test (IAT): which is the best factorial solution? J Med Internet Res. 2013; doi: 10.2196/jmir.2935.
  32. 32.
    Chong Guan N, Isa SM, Hashim AH, Pillai SK, Harbajan Singh MK. Validity of the Malay version of the internet addiction test: a study on a Group of Medical Students in Malaysia. Asia Pac J Public Health. 2012; doi: 10.1177/1010539512447808.
  33. 33.
    Lee K, Lee HK, Gyeong H, Yu B, Song YM, Kim D.. Reliability and validity of the Korean version of the internet addiction test among college students. Journal of Korean Medical Sciences. 2013;28(5):763-8. doi: 10.3346/jkms.2013.28.5.763.
  34. 34.
    Pontes HM, Patrão IM, Griffiths MD (2014) Portuguese validation of the internet addiction test : an empirical study. 3:107–114.Google Scholar
  35. 35.
    Jelenchick LA, Becker T, Moreno MA. Assessing the psychometric properties of the internet addiction test (IAT) in US college students. Psychiatry Res. 2012;196:296–301.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Khazaal Y, Billieux J, Thorens G, Khan R, Louati Y, Scarlatti E, et al. French validation of the internet addiction test. Cyberpsychol Behav. 2008;11:703–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Suhr D. Principal component analysis vs. exploratory factor analysis. SUGI 30 Proceedings. 2005. Retrieved August 14 from Wulder M (2007) A practical guide to the use of selected mul
  38. 38.
    Floros G, Siomos K, Stogiannidou A, Giouzepas I, Garyfallos G. Comorbidity of psychiatric disorders with internet addiction in a clinical sample: the effect of personality, defense style and psychopathology. Addict Behav. 2014;39:1839–45.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.CMH Lahore Medical College and Institute of DentistryLahore CanttPakistan
  2. 2.KVC Health SystemsKansas CityUSA
  3. 3.Centre for Mental Health Research, School of Health SciencesCity University LondonLondonUK

Personalised recommendations