Advertisement

Psychiatric Quarterly

, Volume 86, Issue 4, pp 533–543 | Cite as

The Influences of Whole Brain Radiotherapy on Social Cognition and Association with Hippocampal and Frontal Dosimetry

  • Erhan Yuksek
  • Seda Eroz
  • Ahmet Yassa
  • Dilara Akturk
  • Fagan Zakirov
  • Funda Engin Akcam
  • Murat Emul
Original Paper

Abstract

The influence of brain radiotherapy on neurocognition is a major concern. Social cognition is a mental process in the meaning of social interaction and the recognition of facial emotion is a domain of social cognition. Thus, we aimed to investigate the early effect of whole brain radiotherapy on facial emotion recognition ability. Thirteen patients with various brain tumors in the study. Beck depression and anxiety inventory and the facial emotion recognition test by using a set of photographs were performed at the beginning and post radiotherapy. The severity of depression (16.40 ± 12.16 vs 04.00 ± 02.38 points) and anxiety (14.47 ± 11.96 vs 04.54 ± 03.30 points) were significantly higher in patients. The only significance according to facial emotion recognition rate between initial phase of patients and healthy controls was identifying neutral facial em otion (p = 0.002). The patients after brain radiotherapy had significantly better rate of recognizing fear facial emotions (p = 0.039). This study is the first that investigated the effects of cranial irradiation on facial emotion recognition ability and compares this ability with healthy controls. Interestingly, in the early phase the patients seem to be improved in fear facial emotion after brain radiotherapy without sparing cognition specific regions as hippocampus and frontal regions.

Keywords

Brain radiotherapy Facial emotion recognition Hippocampus Cognition 

Notes

Conflict of interest

The authors report no conflicts of interest.

References

  1. 1.
    Marsh JC, Gielda BT, Herskovic AM, Abrams RA: Cognitive sparing during the administration of whole brain radiotherapy and prophylactic cranial irradiation: current concepts and approaches. Journal of Oncology, 2010. doi: 10.1155/2010/198208.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Peacock KH, Lesser GJ: Current therapeutic approaches in patients with brain metastases. Current Treatment Options in Oncology 7(6):479–89, 2006.CrossRefPubMedGoogle Scholar
  3. 3.
    Sperduto PW, Chao ST, Sneed PK, Luo X, Suh J, Roberge D, et al.: Diagnosis-specific prognostic factors, indexes, and treatment outcomes for patients with newly diagnosed brain metastases: a multi-institutional analysis of 4,259 patients. International Journal of Radiation Oncology* Biology* Physics 77(3):655–661, 2010.CrossRefGoogle Scholar
  4. 4.
    Tallet AV, Azria D, Barlesi F, Spano JP, Carpentier AF, Gonçalves A, et al.: Neurocognitive function impairment after whole brain radiotherapy for brain metastases: actual assessment. Radiat Oncol 7:77, 2012.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Abayomi OK: Pathogenesis of irradiation-induced cognitive dysfunction. Acta Oncologica 35(6):659–663, 1996.CrossRefPubMedGoogle Scholar
  6. 6.
    Wefel JS, Lenzi R, Theriault RL, Davis RN, Meyers CA: The cognitive sequelae of standard-dose adjuvant chemotherapy in women with breast carcinoma. Cancer 100(11):2292–2299, 2004.CrossRefPubMedGoogle Scholar
  7. 7.
    Manda K, Reiter RJ: Melatonin maintains adult hippocampal neurogenesis and cognitive functions after irradiation. Progress in Neurobiology 90(1):60–68, 2010.CrossRefPubMedGoogle Scholar
  8. 8.
    Monje ML, Palmer T: Radiation injury and neurogenesis. Current Opinion in Neurology 16(2):129–134, 2003.CrossRefPubMedGoogle Scholar
  9. 9.
    Brown WR, Thore CR, Moody DM, Robbins ME, Wheeler KT: Vascular damage after fractionated whole-brain irradiation in rats. Radiation Research 164(5):662–668, 2005.CrossRefPubMedGoogle Scholar
  10. 10.
    Haridas S, Kumar M, Manda K: Melatonin ameliorates chronic mild stress induced behavioral dysfunctions in mice. Physiology & Behavior 119:201–207, 2013.CrossRefGoogle Scholar
  11. 11.
    Orrego F, Villanueva S: The chemical nature of the main central excitatory transmitter: a critical appraisal based upon release studies and synaptic vesicle localization. Neuroscience 56(3):539–555, 1993.CrossRefPubMedGoogle Scholar
  12. 12.
    Danysz W, Parsons C, Karcz-Kubichal M, Schwaier A, Popik P, Wedzony K, et al.: GlycineB antagonists as potential therapeutic agents. Amino Acids 14(1-3):235–239, 1998.CrossRefPubMedGoogle Scholar
  13. 13.
    Belka C, Budach W, Kortmann R, Bamberg M: Radiation induced CNS toxicity—molecular and cellular mechanisms. British Journal of Cancer 85(9):1233, 2001.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Gondi V, Tome WA, Mehta MP: Why avoid the hippocampus? A comprehensive review. Radiotherapy and Oncology 97(3):370–376, 2010. doi: 10.1016/j.radonc.2010.09.013.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Brown PD, Pugh S, Laack NN, Wefel JS, Khuntia D, Meyers C, et al.: Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro-Oncology 15(10):1429–1437, 2013.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Martino DJ, Strejilevich SA, Fassi G, Marengo E, Igoa A: Theory of mind and facial emotion recognition in euthymic bipolar I and bipolar II disorders. Psychiatry Research 189(3):379–384, 2011.CrossRefPubMedGoogle Scholar
  17. 17.
    Lautin A: The limbic brain. New york, Springer, 2001.Google Scholar
  18. 18.
    Rutishauser U, Tudusciuc O, Neumann D, Mamelak AN, Heller AC, Ross IB, et al.: Single-unit responses selective for whole faces in the human amygdala. Current Biology 21(19):1654–1660, 2011.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Arnone D, McKie S, Elliott R, Thomas EJ, Downey D, Juhasz G, et al.: Increased amygdala responses to sad but not fearful faces in major depression: relation to mood state and pharmacological treatment. American Journal of Psychiatry 169(8):841–850, 2012.CrossRefPubMedGoogle Scholar
  20. 20.
    Peluso MA, Glahn DC, Matsuo K, Monkul ES, Najt P, Zamarripa F, et al.: Amygdala hyperactivation in untreated depressed individuals. Psychiatry Research 173(2):158–161, 2009.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Suslow T, Konrad C, Kugel H, Rumstadt D, Zwitserlood P, Schöning S, et al.: Automatic mood-congruent amygdala responses to masked facial expressions in major depression. Biological Psychiatry 67(2):155–160, 2010.CrossRefPubMedGoogle Scholar
  22. 22.
    Ekman P, Friesen W.(Eds): Pictures of facial affect. Palo Alto, Consulting Psychologists, 1976.Google Scholar
  23. 23.
    Folstein MF, Folstein SE, McHugh PR: “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research 12(3):189–198, 1975.CrossRefPubMedGoogle Scholar
  24. 24.
    Güngen C, Ertan T, Eker E, Yaşar R, Engin F: Standardize mini mental test’in Türk toplumunda hafif demans tan› s› nda geçerlik ve güvenilirliği. Türk Psikiyatri Dergisi 13:273–281, 2002.PubMedGoogle Scholar
  25. 25.
    Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J: An inventory for measuring depression. Archives of General Psychiatry 4(6):561, 1961.CrossRefPubMedGoogle Scholar
  26. 26.
    Hisli N: A study on the validity of Beck Depression Inventory. Turkish Journal of Psychology 6(22):118–123, 1988.Google Scholar
  27. 27.
    Beck AT, Epstein N, Brown G, Steer RA: An inventory for measuring clinical anxiety: psychometric properties. Journal of Consulting and Clinical Psychology 56(6):893, 1988.CrossRefPubMedGoogle Scholar
  28. 28.
    Ulusoy M, Sahin N, Erkmen H: Turkish version of the Beck Anxiety Inventory: psychometric properties. Journal of Cognitive Psychotherapy 12:163–172, 1998.Google Scholar
  29. 29.
    Grattan-Smith P, Morris J, Shores E, Batchelor J, Sparks R: Neuropsychological abnormalities in patients with pituitary tumours. Acta Neurologica Scandinavica 86(6):626–631, 1992.CrossRefPubMedGoogle Scholar
  30. 30.
    Leung S, Kreel L, Tsao S: Asymptomatic temporal lobe injury after radiotherapy for nasopharyngeal carcinoma: incidence and determinants. British Journal of Radiology 65(776):710–714, 2014.CrossRefGoogle Scholar
  31. 31.
    Meyers CA, Geara F, Wong PF, Morrison WH: Neurocognitive effects of therapeutic irradiation for base of skull tumors. International Journal of Radiation Oncology* Biology* Physics 46(1):51–55, 2000.CrossRefGoogle Scholar
  32. 32.
    Sakata KI, Aoki Y, Karasawa K, Nakagawa K, Hasezawa K, Muta N, et al.: Analysis of the results of combined therapy for maxillary carcinoma. Cancer 71(9):2715-2722, 1993.CrossRefPubMedGoogle Scholar
  33. 33.
    Coupland NJ, Sustrik RA, Ting P, Li D, Hartfeil M, Singh AJ, et al.: Positive and negative affect differentially influence identification of facial emotions. Depression and Anxiety 19(1):31–34, 2004 doi: 10.1002/da.10136.CrossRefPubMedGoogle Scholar
  34. 34.
    Gray J, Venn H, Montagne B, Murray L, Burt M, Frigerio E, et al.: Bipolar patients show mood-congruent biases in sensitivity to facial expressions of emotion when exhibiting depressed symptoms, but not when exhibiting manic symptoms. Cognitive Neuropsychiatry 11(6):505–520, 2006. doi: 10.1080/13546800544000028.CrossRefPubMedGoogle Scholar
  35. 35.
    Csukly G, Telek R, Filipovits D, Takacs B, Unoka Z, Simon L: What is the relationship between the recognition of emotions and core beliefs: Associations between the recognition of emotions in facial expressions and the maladaptive schemas in depressed patients. Journal of Behavior Therapy and Experimental Psychiatry 42(1):129–137, 2011. doi: 10.1016/j.jbtep.2010.08.003.CrossRefPubMedGoogle Scholar
  36. 36.
    Marsh AA, Blair RJ: Deficits in facial affect recognition among antisocial populations: a meta-analysis. Neuroscience and Biobehavioral Reviews 32(3):454–465, 2008. doi: 10.1016/j.neubiorev.2007.08.003.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Orgeta V: Emotion recognition ability and mild depressive symptoms in late adulthood. Experimental Aging Research 40(1):1–12, 2014. doi: 10.1080/0361073x.2014.857535.CrossRefPubMedGoogle Scholar
  38. 38.
    Noordewier MK, Breugelmans SM: On the valence of surprise. Cognition & Emotion 27(7):1326–1334, 2013. doi: 10.1080/02699931.2013.777660.CrossRefGoogle Scholar
  39. 39.
    Dursun P, Emül M, Gençöz F (eds): A review of the literature on emotional facial expression and Its nature, Yeni Symposium, 2010.Google Scholar
  40. 40.
    Adolphs R: The social brain: neural basis of social knowledge. Annual Review of Psychology 60:693–716, 2009. doi: 10.1146/annurev.psych.60.110707.163514.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Adolphs R: What does the amygdala contribute to social cognition? Annals of the New York Academy of Sciences 1191:42–61, 2010. doi: 10.1111/j.1749-6632.2010.05445.x.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Kirkpatrick B, Buchanan RW: The neural basis of the deficit syndrome of schizophrenia. The Journal of Nervous and Mental Disease. 178(9):545–555, 1990.CrossRefPubMedGoogle Scholar
  43. 43.
    Demirel H, Yesilbas D, Ozver I, Yuksek E, Sahin F, Aliustaoglu S, et al.: Psychopathy and facial emotion recognition ability in patients with bipolar affective disorder with or without delinquent behaviors. Comprehensive Psychiatry, 2013. doi: 10.1016/j.comppsych.2013.11.022.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Erhan Yuksek
    • 1
  • Seda Eroz
    • 1
    • 2
  • Ahmet Yassa
    • 1
  • Dilara Akturk
    • 3
  • Fagan Zakirov
    • 1
  • Funda Engin Akcam
    • 3
  • Murat Emul
    • 1
  1. 1.Department of Psychiatry, Medical School of Cerrahpasaİstanbul UniversityIstanbulTurkey
  2. 2.Department of Radiation Oncology, Medical School of Cerrahpasaİstanbul UniversityIstanbulTurkey
  3. 3.Medical School of Cerrahpasaİstanbul UniversityIstanbulTurkey

Personalised recommendations