Protection of Metals

, Volume 41, Issue 4, pp 358–362 | Cite as

Corrosion of Hydrides of Nickel and Cu30Ni Alloy in Oxygen Containing Solutions

  • G. N. Markos’yan
  • D. S. Sirota
  • A. P. Pchel’nikov


Corrosion behavior of nickel hydride is studied in alkaline, neutral, and weakly acidic oxygen-containing solutions by compensating oxygen consumed in corrosion and spectrophotometric analysis of solution for nickel. It is shown that in the course of nickel hydride corrosion in alkaline solutions, oxygen is consumed solely in its interaction with hydrogen formed at hydride decomposition, while nickel remains at the surface. It is concluded that, in a pH range from 7 to 14, hydrogen oxidation is limited by its solid-phase diffusion, whereas the rate of nickel hydride decomposition is pH-independent. The difference in the corrosion behavior of the original alloy and its hydride is attributed to the fact that the original alloy evolves copper ions, whereas the hydride evolves hydrogen.


Oxidation Oxygen Hydrogen Copper Nickel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Markos’yan, G.N., Pchel’nikov, A.P., and Losev, V.V., Zashch. Met., 1997, vol. 33, no.5, p. 503.Google Scholar
  2. 2.
    Markos’yan, G.N., Zashch. Met., 2004, vol. 40, no.5, p. 471.Google Scholar
  3. 3.
    Molodov, A.I., Markos’yan, G.N., and Losev, V.V., Zashch. Met., 1984, vol. 20, no.5, p. 810.Google Scholar
  4. 4.
    Molodov, A.I. and Markos’yan, G.N., USSR Inventor’s Certificate no. 1370528; Byull. Izobret., 1988, no. 4, p. 179.Google Scholar
  5. 5.
    Charlot, G., Les Methodes de la Chimie Analitique, Masson de Cie, 1961 (translated into Russian).Google Scholar
  6. 6.
    Kozachinskii, A.E., Pchel’nikov, A.P., Skuratnil, Ya.B., and Losev, V.V., Elektrokhimiya, 1994, vol. 30, no.4, p. 510.Google Scholar
  7. 7.
    Losev, V.V., Pchel’nikov, A.P., and Marshakov, A.I., Elektrokhimiya, 1979, vol. 15, no.6, p. 837.Google Scholar
  8. 8.
    Losev, V.V., Pchel’nikov, A.P., and Marshakov, A.I., Itogi Nauki Tekh., Ser. Elektrokhimiya, Moscow: VINITI, 1984, vol. 21, p. 77.Google Scholar
  9. 9.
    Sirota, D.S. and Pchel’nikov, A.P., Zashch. Met., 2004, vol. 40, no.5, p. 491.Google Scholar
  10. 10.
    Szklarska-Smialowska Z. and Smialowski M., J. Electrochem. Soc., 1963, vol. 110, no.5, p. 444.Google Scholar
  11. 11.
    Burtovyy, R., Utzig, E., and Tkacz, M., Termochim. Acta, 2000, no. 363, p. 157.Google Scholar
  12. 12.
    Sirota, D.S. and Pchel’nikov, A.P., Zashch. Met., 2005, vol. 41 (in press).Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • G. N. Markos’yan
    • 1
  • D. S. Sirota
    • 1
  • A. P. Pchel’nikov
    • 1
  1. 1.Karpov Institute of Physical ChemistryState Scientific Center of the Russian FederationMoscowRussia

Personalised recommendations