Journal of Productivity Analysis

, Volume 33, Issue 2, pp 81–96 | Cite as

On functional form representation of multi-output production technologies

  • Rolf Färe
  • Carlos Martins-Filho
  • Michael Vardanyan


The introduction of directional distance functions has given researchers an alternative to Shephard distance functions. In this paper we conduct a Monte Carlo study to investigate the performance of distance functions as an approximation for models of technology. Our results indicate that quadratic representations of technology have better approximation properties than translog parameterizations.


Distance functions Parameterization 

JEL Classification

D24 C63 


  1. Aigner DJ, Chu S-F (1968) On estimating the industry production function. Am Econ Rev 58:826–839Google Scholar
  2. Atkinson SE, Färe R, Primont D (2003a) Stochastic estimation of firm inefficiency using distance functions. South Econ J 69(3):596–611CrossRefGoogle Scholar
  3. Atkinson SE, Cornwell C, Honerkamp O (2003b) Measuring and decomposing productivity change: stochastic distance function estimation versus data envelopment analysis. J Bus Econ Stat 21(3):284–294CrossRefGoogle Scholar
  4. Chambers RG (1998) Input and output indicators. In: Färe R, Grosskopf S, Russell RR (eds) Index numbers: essays in honour of Sten Malmquist. Kluwer Academic Publishers, BostonGoogle Scholar
  5. Chambers RG, Chung Y, Färe R (1998) Profit, distance functions and Nerlovian efficiency. J Optim Theory Appl 98:351–364CrossRefGoogle Scholar
  6. Christensen LR, Jorgenson DW, Lau LJ (1971) Conjugate duality and the transcendental logarithmic production function. Econometrica 39:255–256Google Scholar
  7. Diewert WE (1971) An application of the shephard duality theorem: a generalized leontief production function. J Polit Econ 79:481–507CrossRefGoogle Scholar
  8. Diewert WE (2002) The quadratic approximation lemma and decomposition of superlative indexes. J Econ Soc Meas 28:63–88Google Scholar
  9. Färe R, Grosskopf S (2004) New directions: efficiency and productivity. Kluwer Academic Publishers, BostonGoogle Scholar
  10. Färe R, Primont D (1995) Multi-output production and duality: theory and applications. Kluwer Academic Publishers, BostonGoogle Scholar
  11. Färe R, Sung KJ (1986) On second-order Taylor’s series approximation and linear homogeneity. Aequationes Mathematicae 30:180–186CrossRefGoogle Scholar
  12. Färe, Rolf and Anders Lundberg. (2005). “Parameterizing the Shortage (Directional Distance) Function.” Oregon State University Working PaperGoogle Scholar
  13. Färe R, Grosskopf S, Hayes Kathy, Margaritis D (2008) Estimating demand with distance functions: parameterization in the primal and dual. J Econom 147:266–274CrossRefGoogle Scholar
  14. Guilkey DK, Knox Lovell CA, Sickles RC (1983) A comparison of the performance of three flexible functional forms. Int Econ Rev 24:591–616CrossRefGoogle Scholar
  15. Luenberger DG (1992) Benefit functions and duality. J Math Econ 21:461–481CrossRefGoogle Scholar
  16. Morishima M (1967) A few suggestions on the theory of elasticity. Keizai Hyoron (Econ Rev) 16:144–150Google Scholar
  17. Perroni C, Rutherford TF (1995) Regular flexibility of nested CES functions. Eur Econ Rev 39:335–343CrossRefGoogle Scholar
  18. Perroni C, Rutherford TF (1998) A comparison of the performance of flexible functional forms for use in applied general equilibrium analysis. Comput Econ 11:245–263CrossRefGoogle Scholar
  19. Shephard RW (1953) Cost and production functions. Princeton University Press, PrincetonGoogle Scholar
  20. Shephard RW (1970) Theory of cost and production functions. Princeton University Press, PrincetonGoogle Scholar
  21. Vardanyan M, Noh DW (2006) Approximating the cost of pollution abatement via alternative specifications of a multi-output production technology: a case of the U.S. electric utility industry. J Environ Manage 80:177–190CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Rolf Färe
    • 1
  • Carlos Martins-Filho
    • 2
    • 3
  • Michael Vardanyan
    • 4
  1. 1.Department of Economics and Department of Agricultural and Resource EconomicsOregon State UniversityCorvallisUSA
  2. 2.Department of EconomicsUniversity of ColoradoBoulderUSA
  3. 3.International Food Policy Research InstituteWashingtonUSA
  4. 4.Luxembourg School of FinanceUniversity of LuxembourgLuxembourg CityLuxembourg

Personalised recommendations