Problems of Information Transmission

, Volume 41, Issue 1, pp 45–58 | Cite as

Solution of variational dynamic problems under parametric uncertainty

  • V. Yu. Tertychnyi-Dauri
Methods of Signal Processing


The paper deals with a number of variational dynamic problems with parameters subject to unknown smooth drift in time. Solution schemes are considered using both the classical variational method and reduction of the original problem to a conditional nonholonomic adaptive optimal control problem. In the second case, a solution is found with the help of the dynamic programming method and a specially chosen adjustment algorithm for unknown parameters.


Control Problem System Theory Dynamic Programming Unknown Parameter Variational Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grodzovskii, G.L., Ivanov, Yu.N., and Tokarev, V.V., Mekhanika kosmicheskogo poleta. Problemy optimizatsii (Spaceflight Mechanics. Optimization Problems), Moscow: Nauka, 1975.Google Scholar
  2. 2.
    Il’in, V.A. and Kuzmak, G.E., Optimal’nye perelety kosmicheskikh apparatov s dvigatelyami bol’shoi tyagi (Optimal Flights of Spacecrafts with High-Thrust Engines), Moscow: Nauka, 1976.Google Scholar
  3. 3.
    Okhotsimskii, D.E. and Sikharulidze, Yu.G., Osnovy mekhaniki kosmicheskogo poleta (Foundations of Spaceflight Mechanics), Moscow: Nauka, 1990.Google Scholar
  4. 4.
    Tertychnyi-Dauri, V.Yu., Adaptivnaya mekhanika (Adaptive Mechanics), Moscow: Nauka, Fizmatlit, 1998.Google Scholar
  5. 5.
    Tertychnyi-Dauri, V.Yu., Stokhasticheskaya mekhanika (Stochastic Mechanics), Moscow: Faktorial, 2001.Google Scholar
  6. 6.
    Young, L.C., Lectures on the Calculus of Variations and Optimal Control Theory, Philadelphia: Saunders, 1969. Translated under the title Lektsii po variatsionnomu ischisleniyu i teorii optimal’nogo upravleniya, Moscow: Mir, 1974.Google Scholar
  7. 7.
    El’sgol’ts, L.E., Differentsial’nye uravneniya i variatsionnoe ischislenie, Moscow: Nauka, 1969, 2nd ed. Translated under the title Differential Equations and the Calculus of Variations, Moscow: Mir, 1970.Google Scholar
  8. 8.
    Korn, G.A. and Korn, T.M., Mathematical Handbook for Scientists and Engineers, New York: McGraw-Hill, 1968. Translated under the title Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Moscow: Nauka, 1974.Google Scholar
  9. 9.
    Gabasov, R. and Kirillova, F.M., Kachestvennaya teoriya optimal’nykh protsessov, Moscow: Nauka, 1971. Translated under the title The Qualitative Theory of Optimal Processes, New York: Dekker, 1976.Google Scholar
  10. 10.
    Boltyanskii, V.G., Matematicheskie metody optimal’nogo upravleniya, Moscow: Nauka, 1969, 2nd ed. Translated under the title Mathematical Methods of Optimal Control, New York: Holt, Rinehart, Winston, 1971.Google Scholar
  11. 11.
    Chernous’ko, F.L. and Kolmanovskii, V.B., Computational and Approximate Methods of Optimal Control, in Itogi Nauki i Tekhn.,Ser. Mat. Analiz, vol. 17, Moscow: VINITI, 1977, pp. 101–166.Google Scholar
  12. 12.
    Tertychnyi-Dauri, V.Yu., Adaptive Optimal Nonlinear Filtering and Some Related Questions. I, II, Avtomat. Telemekh., 2001, vol. 62, no.9, pp. 125–137; 2002, vol. 63, no. 1, pp. 86–101 [Automat. Remote Control (Engl. Transl.), 2001, vol. 62, no. 9, pp. 1511–1522; 2002, vol. 63, no. 1, pp. 76–89].Google Scholar
  13. 13.
    Tertychnyi-Dauri, V.Yu., Parametric Filtering: Optimal Synthesis on a Nonlinear Dynamic Variety, Probl. Peredachi Inf., 2001, vol. 37, no.4, pp. 97–111 [Probl. Inf. Trans. (Engl. Transl.), 2001, vol. 37, no. 4, pp. 365–379].Google Scholar
  14. 14.
    Beletskii, V.V. and Egorov, V.A., Interplanetary Flights with Constant-Power Engines, Kosmich. Issled., 1964, vol. 2, no.3, pp. 360–372.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • V. Yu. Tertychnyi-Dauri
    • 1
  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. Petersburg

Personalised recommendations