Skip to main content

Advertisement

Log in

Mitigation of drought-induced oxidative damage by enhanced carbon assimilation and an efficient antioxidative metabolism under high CO2 environment in pigeonpea (Cajanus cajan L.)

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In the current study, pigeonpea (Cajanus cajan L.), a promising legume food crop was assessed for its photosynthetic physiology, antioxidative system as well as C and N metabolism under elevated CO2 and combined drought stress (DS). Pigeonpea was grown in open top chambers under elevated CO2 (600 µmol mol−1) and ambient CO2 (390 ± 20 µmol mol−1) concentrations, later subjected to DS by complete water withholding. The DS plants were re-watered and recovered (R) to gain normal physiological growth and assessed the recoverable capacity in both elevated and ambient CO2 concentrations. The elevated CO2 grown pigeonpea showed greater gas exchange physiology, nodule mass and total dry biomass over ambient CO2 grown plants under well-watered (WW) and DS conditions albeit a decrease in leaf relative water content (LRWC). Glucose, fructose and sucrose levels were measured to understand the role of hexose to sucrose ratios (H:S) in mediating the drought responses. Free amino acid levels as indicative of N assimilation provided insights into C and N balance under DS and CO2 interactions. The enzymatic and non-enzymatic antioxidants showed significant upregulation in elevated CO2 grown plants under DS thereby protecting the plant from oxidative damage caused by the reactive oxygen species. Our results clearly demonstrated the protective role of elevated CO2 under DS at lower LRWC and gained comparative advantage of mitigating the DS-induced damage over ambient CO2 grown pigeonpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AbdElgawad H, FarfanVignolo ER, De Vos D, Asard H (2015) Elevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumes. Plant Sci 231:1–10

    Article  CAS  PubMed  Google Scholar 

  • Achary VMM, Jena S, Panda KK, Panda BB (2008) Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotoxicol Environ Saf 70:300–310

    Article  CAS  PubMed  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI (2011) Recent progress in the studies of structure and function of photosystem II. J Photochem Photbiol B 104:1–8

    Article  CAS  Google Scholar 

  • Allakhverdiev SI, Klimov VV, Carpentier R (1997) Evidence for the involvement of cyclic electron transport in the protection of photosystem II against photoinhibition: influence of a new phenolic compound. Biochem 36:4149–4154

    Article  CAS  Google Scholar 

  • Allakhverdiev SI, Los DA, Mohanty P, Nishiyama Y, Murata N (2007) Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. BBA-Bioenerg 1767:1363–1371

    Article  CAS  Google Scholar 

  • Ameye M, Wertin TM, Bauweraerts I, McGuire MA, Teskey RO, Steppe K (2012) The effect of induced heat waves on Pinus taeda and Quercus rubra seedlings in ambient and elevated CO2 atmospheres. New Phytol 196:448–461

    Article  PubMed  Google Scholar 

  • Bauweraerts I, Wertin TM, Ameye M, McGuire MA, Teskey RO, Steppe K (2013) The effect of heat waves, elevated [CO2] and low soil water availability on northern red oak (Quercus rubra L.) seedlings. Glob Chang Biol 19:517–528

    Article  PubMed  Google Scholar 

  • Becana M, Dalton DA, Moran JF, Iturbe-Ormaetxe I, Matamoros MA, Rubio MC (2000) Reactive oxygen species and antioxidants in legume nodules. Physiol Plant 109:372–381

    Article  CAS  Google Scholar 

  • Bilger W, Schreiber U, Bock M (1995) Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia 102:425–432

    Article  PubMed  Google Scholar 

  • Brestic M, Zivcak M, Kunderlikova K, Sytar O, Shao H, Kalaji HM, Allakhverdiev SI (2015) Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. Photosynth Res 125:151–166

    Article  CAS  PubMed  Google Scholar 

  • Cabrerizo PM, González EM, AparicioTejo PM, Arres Igor C (2001) Continuous CO2 enrichment leads to increased nodule biomass, carbon availability to nodules and activity of carbon-metabolising enzymes but does not enhance specific nitrogen fixation in pea. Physiol Plant 113:33–40

    Article  CAS  Google Scholar 

  • Cernusak LA, Winter K, Martinez C, Correa E, Aranda J, Garcia M, Jaramillo C, Turner BL (2011) Responses of legume versus nonlegume tropical tree seedlings to elevated CO2 concentration. Plant Physiol 157:372–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen GX, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998

    Article  CAS  Google Scholar 

  • Contreras L, Mella D, Moenne A, Correa JA (2009) Differential responses to copper-induced oxidative stress in the marine macroalgae Lessonia nigrescens and Scytosiphon lomentaria (Phaeophyceae). Aquatic Toxicol 94:94–102

    Article  CAS  Google Scholar 

  • De Luis I, Irigoyen J, Sánchez Díaz M (1999) Elevated CO2 enhances plant growth in droughted N2-fixing alfalfa without improving water status. Physiol Plant 107:84–89

    Article  Google Scholar 

  • Ellsworth DS, Reich PB, Naumburg ES, Koch GW, Kubiske ME, Smith SD (2004) Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Glob Chang Biol 10:2121–2138

    Article  Google Scholar 

  • FarfanVignolo ER, Asard H (2012) Effect of elevated CO2 and temperature on the oxidative stress response to drought in Lolium perenne L. and Medicago sativa L. Plant Physiol Biochem 59:55–62

    Article  CAS  Google Scholar 

  • Geissler N, Hussin S, Koyro HW (2009) Elevated atmospheric CO2 concentration ameliorates effects of NaCl salinity on photosynthesis and leaf structure of Aster tripolium L. J Exp Bot 60:137–151

    Article  CAS  PubMed  Google Scholar 

  • Giannoccaro E, Wang YJ, Chen P (2006) Effects of solvent, temperature, time, solvent-to-sample ratio, sample size, and defatting on the extraction of soluble sugars in soybean. J Food Sci 71:C59–C64

    Article  CAS  Google Scholar 

  • Guo J, Trotter C (2006) Estimating photosynthetic light-use efficiency using the photochemical reflectance index: the effects of short-term exposure to elevated CO2 and low temperature. Int J Remote Sens 27:4677–4684

    Article  Google Scholar 

  • Gupta AK, Kaur N (2005) Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci 30:761–776

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hodges DM, Forney CF (2000) The effects of ethylene, depressed oxygen and elevated carbon dioxide on antioxidant profiles of senescing spinach leaves. J Exp Bot 51:645–655

    Article  CAS  PubMed  Google Scholar 

  • Hymus GJ, Baker NR, Long SP (2001) Growth in elevated CO2 can both increase and decrease photochemistry and photoinhibition of photosynthesis in a predictable manner. Dactylis glomerata grown in two levels of nitrogen nutrition. Plant Physiol 127:1204–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, Brestic M, Bussotti F, Calatayud A, Dąbrowski P (2014) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122:121–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalva MS, Sreeharsha RV, Mudalkar S, Reddy AR (2014) Persistent stimulation of photosynthesis in short rotation coppice mulberry under elevated CO2 atmosphere. J Photochem Photobiol B 137:21–30

    Article  CAS  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    Article  CAS  PubMed  Google Scholar 

  • Kumari S, Agrawal M, Tiwari S (2013) Impact of elevated CO2 and elevated O3 on Beta vulgaris L.: pigments, metabolites, antioxidants, growth and yield. Environ Pollut 174:279–288

    Article  CAS  PubMed  Google Scholar 

  • Larrainzar E, Molenaar JA, Wienkoop S, Gil Quintana E, Alibert B, Limami Am A, Igor C, González E (2014) Drought stress provokes the down-regulation of methionine and ethylene biosynthesis pathways in Medicago truncatula roots and nodules. Plant Cell Environ 37:2051–2063

    Article  CAS  PubMed  Google Scholar 

  • Lemoine R, La Camera S, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain JL, Laloi M, Coutos Thévenot P, Maurousset L (2013) Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci 4:272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li QM, Liu BB, Wu Y, Zou ZR (2008) Interactive effects of drought stresses and elevated CO2 concentration on photochemistry efficiency of cucumber seedlings. J Integr Plant Biol 50:1307–1317

    Article  CAS  PubMed  Google Scholar 

  • Marino D, Frendo P, Ladrera R, Zabalza A, Puppo A, Arrese Igor C, González EM (2007) Nitrogen fixation control under drought stress. Localized or systemic? Plant Physiol 143:1968–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyake C, Asada K (1992) Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant Cell Physiol 33:541–553

    CAS  Google Scholar 

  • Mohanty P, Allakhverdiev SI, Murata N (2007) Application of low temperatures during photoinhibition allows characterization of individual steps in photodamage and the repair of photosystem II. Photosynth Res 94:217–224

    Article  CAS  PubMed  Google Scholar 

  • Mudalkar S, Sreeharsha RV, Reddy AR (2016) Involvement of glyoxalases and glutathione reductase in conferring abiotic stress tolerance to Jatropha curcas L. Environ Exp Bot 134:141–150

    Article  CAS  Google Scholar 

  • Naudts K, Van den Berge J, Janssens I, Nijs I, Ceulemans R (2013) Combined effects of warming and elevated CO2 on the impact of drought in grassland species. Plant Soil 369:497–507

    Article  CAS  Google Scholar 

  • Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2-do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162:253–280

    Article  Google Scholar 

  • Rascher U, Liebig M, Lüttge U (2000) Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell Environ 23:1397–1405

    Article  CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Rogers A, Allen D, Davey P, Morgan P, Ainsworth E, Bernacchi C, Cornic G, Dermody O, Dohleman F, Heaton E (2004) Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their life-cycle under free-air carbon dioxide enrichment. Plant Cell Environ 27:449–458

    Article  CAS  Google Scholar 

  • Rogers A, Gibon Y, Stitt M, Morgan PB, Bernacchi CJ, Ort DR, Long SP (2006) Increased C availability at elevated carbon dioxide concentration improves N assimilation in a legume. Plant Cell Environ 29:1651–1658

    Article  CAS  PubMed  Google Scholar 

  • Rogers A, Ainsworth EA, Leakey AD (2009) Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiol 151:1009–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolland F, Baena Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Ruan YL, Llewellyn DJ, Furbank RT (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15:952–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS (2010) Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant 3:942–955

    Article  CAS  PubMed  Google Scholar 

  • Sanchez FJ, Manzanares Ma, de Andres EF, Tenorio JL, Ayerbe L (1998) Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Res 59:225–235

    Article  Google Scholar 

  • Schaedle M, Bassham JA (1977) Chloroplast glutathione reductase. Plant Physiol 59:1011–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekhar KM, Sreeharsha RV, Reddy AR (2015) Differential responses in photosynthesis, growth and biomass yields in two mulberry genotypes grown under elevated CO2 atmosphere. J Photochem Photobiol B 151:172–179

    Article  CAS  PubMed  Google Scholar 

  • Sekhar KM, Reddy KS, Reddy AR (2017) Amelioration of drought-induced negative responses by elevated CO2 in field grown short rotation coppice mulberry (Morus spp.), a potential bio-energy tree crop. Photosynth Res 132:151–164

    Article  CAS  PubMed  Google Scholar 

  • Sengupta D, Reddy AR (2011) Water deficit as a regulatory switch for legume root responses. Plant Signal Behav 6:914–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serraj R, Sinclair TR, Purcell LC (1999) Symbiotic N2 fixation response to drought. J Exp Bot 50:143–155

    CAS  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Critic Rev Biochem Mol Biol 35:291–314

    Article  CAS  Google Scholar 

  • Sreeharsha RV, Sekhar KM, Reddy AR (2015) Delayed flowering is associated with lack of photosynthetic acclimation in pigeonpea (Cajanus cajan L.) grown under elevated CO2. Plant Sci 231:82–93

    Article  CAS  PubMed  Google Scholar 

  • Streeter J (2003) Effects of drought on nitrogen fixation in soybean root nodules. Plant Cell Environ 26:1199–1204

    Article  CAS  Google Scholar 

  • Tezara W, Mitchell V, Driscoll S, Lawlor D (2002) Effects of water deficit and its interaction with CO2 supply on the biochemistry and physiology of photosynthesis in sunflower. J Exp Bot 53:1781–1791

    Article  CAS  PubMed  Google Scholar 

  • Trouverie J, Chateau Joubert S, Thévenot C, Jacquemot MP, Prioul JL (2004) Regulation of vacuolar invertase by abscisic acid or glucose in leaves and roots from maize plantlets. Planta 219:894–905

    Article  CAS  PubMed  Google Scholar 

  • Ursini F, Maiorino M, Gregolin C (1985) The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim Biophys Acta (BBA)-Gen Sub 839:62–70

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Vu JC, Allen LH (2009) Growth at elevated CO2 delays the adverse effects of drought stress on leaf photosynthesis of the C4 sugarcane. J Plant Physiol 166:107–116

    Article  CAS  PubMed  Google Scholar 

  • Vurro E, Bruni R, Bianchi A, di Toppi LS (2009) Elevated atmospheric CO2 decreases oxidative stress and increases essential oil yield in leaves of Thymus vulgaris grown in a mini-FACE system. Environ Exp Bot 65:99–106

    Article  CAS  Google Scholar 

  • Wang L, Ruan YL (2013) Regulation of cell division and expansion by sugar and auxin signaling. Front Plant Sci 4:163

    PubMed  PubMed Central  Google Scholar 

  • Watling JR, Press MC, Quick WP (2000) Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum. Plant Physiol 123:1143–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widodo W, Vu JC, Boote KJ, Baker JT, Allen LH (2003) Elevated growth CO2 delays drought stress and accelerates recovery of rice leaf photosynthesis. Environ Exp Bot 49:259–272

    Article  CAS  Google Scholar 

  • Wingler A, Roitsch T (2008) Metabolic regulation of leaf senescence: interactions of sugar signalling with biotic and abiotic stress responses. Plant Biol 10:50–62

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Jiang Y, Zhou G (2015) Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. Front Plant Sci 6:701

    PubMed  PubMed Central  Google Scholar 

  • Yilmaz O, Kahraman K, Ozgur R, Uzilday B, Turkan I, Ozturk L (2017) Growth performance and antioxidative response in bread and durum wheat plants grown with varied potassium treatments under ambient and elevated carbon dioxide. Environ Exp Bot 137:26–35

    Article  CAS  Google Scholar 

  • Zinta G, AbdElgawad H, Domagalska MA, Vergauwen L, Knapen D, Nijs I, Janssens IA, Beemster GT, Asard H (2014) Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels. Glob Chang Biol 20:3670–3685

    Article  PubMed  Google Scholar 

  • Zivcak M, Brestic M, Olsovska K, Slamka P (2008) Performance index as a sensitive indicator of water stress in Triticum aestivum L. Plant Soil Environ 54:133–139

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant (BT/PR-12024/BCE/08/1097/2014) from DBT, Government of India to Attipalli R Reddy. We thank ICRISAT, Patancheru, India for generously providing pigeonpea seed material. RVS and SM are thankful to UGC, New Delhi for fellowship. Debashree Sengupta acknowledges the funding from Young Scientist start up grant (File number: YSS/2015/000635), DST, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attipalli Ramachandra Reddy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 78 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreeharsha, R.V., Mudalkar, S., Sengupta, D. et al. Mitigation of drought-induced oxidative damage by enhanced carbon assimilation and an efficient antioxidative metabolism under high CO2 environment in pigeonpea (Cajanus cajan L.). Photosynth Res 139, 425–439 (2019). https://doi.org/10.1007/s11120-018-0586-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-018-0586-9

Keywords

Navigation